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Introduction

Modern policy optimization algorithm, such as TRPO and PPO, owe their success to
the use of parameterized policies such as

π(a|s) ∝ exp(fθ(s, a)),

where fθ is a neural network. However, the use general parameterization schemes
still lacks theoretical justification.

Contribution: A novel framework for policy optimization based on mirror descent
that naturally accommodates general parameterizations and enjoys theoretical
guarantees.

Preliminaries

Consider a discounted MDP (S,A, P, r, γ, µ). Given a policy π, define the value
function

V π(s) := Eat∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣π, s0 = s

]
and the Q-function

Qπ(s, a) := Eat∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtr(st, at) | π, s0 = s, a0 = a

]
.

Letting V π(µ) := Es∼µ[V
π(s)], our objective is for the agent to find an optimal

policy
π⋆ ∈ argmaxπ∈(∆(A))S V π(µ).

Define the discounted state visitation distribution by

dπµ(s) := (1− γ)Es0∼µ

[ ∞∑
t=0

γtP (st = s | π, s0)
]
.

Mirror Descent. Let Y ⊆ R|A| be a convex set. A mirror map h : Y → R is a
strictly convex, continuously differentiable and essentially smooth functiona such
that ∇h(Y) = R|A|. The convex conjugate of h, denoted by h∗, is given by

h∗(x∗) := supx∈Y⟨x∗, x⟩ − h(x), x∗ ∈ R|A|.

The mirror map h induces a Bregman divergence, defined as
Dh(x, y) := h(x)− h(y)− ⟨∇h(y), x− y⟩,

where Dh(x, y) ⩾ 0 for all x, y ∈ Y . Let X ⊆ Y be a convex set and V : X → R be
a differentiable function. To solve minx∈X V (x), MD consists in the updates: for all
t ⩾ 0,

yt+1 = ∇h(xt)− ηt∇V (x)|x=xt ,

xt+1 = ProjhX (∇h∗(yt+1)) = argminx∈X Dh(x,∇h∗(yt+1)).

Notation. At each time t, let πt := πθt , f t := fθt , V t := V πt

, Qt := Qπt

, and
dtµ := dπ

t

µ . Further, for any function y : S × A → R and distribution v over S × A,
let ys := y(s, ·) ∈ R|A| and ∥y∥2L2(v)

= Ev[(y(s, a))
2]. Let D⋆

0 = Es∼d⋆
µ
[Dh(π

⋆
s , π

0
s)].

ah is essentially smooth if limx→∂Y ∥∇h(x)∥2 = +∞, where ∂Y denotes the boundary of Y .

Policy Mirror Descent

Given a parameterized function class FΘ = {fθ : S × A → R, θ ∈ Θ}, ideally, we
would like to execute the exact MD-based algorithm: for all t ⩾ 0 and for all s ∈ S ,

f t+1
s = ∇h(πt

s) + ηt(1− γ)∇sV
t(µ)/dtµ(s) = ∇h(πt

s) + ηtQ
t
s, (1)

πt+1
s = Projh∆(A)(∇h∗(ηtf

t+1
s )).

However, there may not be any θt+1 ∈ Θ such that (1) is satisfied for all s ∈ S . To
remedy this issue, we propose Approximate Mirror Policy Optimization (AMPO).

Approximate Mirror Policy Optimization

Algorithm 1: Approximate Mirror Policy Optimization
Input: Initial policy π0, mirror map h, parameterization class FΘ, iteration
number T , step-size schedule (ηt)t⩾0, state-action distribution sequence
(vt)t⩾0.
1: For t = 0, . . . , T − 1 do:
2: Obtain θt+1 ∈ Θ such that

θt+1 ∈ argminθ∈Θ

∥∥fθ −Qt − η−1
t ∇h(πt)

∥∥2
L2(vt)

.
3: Update

πt+1
s = argmin

π′∈∆(A)

Dh(π
′,∇h∗(ηtf

θt+1

s )), ∀s ∈ S.

Output: (π1, . . . , πT )

Comparison with previous frameworks

Similarly to AMPO, previous approximations of PMD [1, 2] provide an expression to
be optimized. For instance, [1] aim to maximize an expression equivalent to

πt+1 = argmax
πθ∈Π(Θ)

Es∼dt
µ
[ηt⟨Qt

s, π
θ
s⟩ − Dh(π

θ
s , π

t
s)], (2)

where Π(Θ) is a given parameterized policy class. The improvement of AMPO over
this type of update is twofold.

▷ The parameterized policy class Π(Θ) is often non-convex with respect to θ in
practice, which prevents the application of existing proof techniques that rely on
the convexity of the tabular parameterization [3]. On the contrary, AMPO avoids this
problem thanks to the Bregman projection and the update in Line 2 of Algorithm 1.

▷ AMPO involves a subroutine optimization procedure that is structurally different
from the update in (2). Our approach employs a standard regression procedure,
which has been extensively studied and benefits from established solving methods.

A practical class of mirror maps

For a ∈ (−∞,+∞], ω ⩽ 0, let an ω-potential be an increasing C1-diffeomorphism
ϕ : (−∞, a) → (ω,+∞) such that

lim
u→−∞

ϕ(u) = ω, lim
u→a

ϕ(u) = +∞,

∫ 1

0

ϕ−1(u)du ⩽ ∞.

For any ω-potential ϕ, the associated mirror map hϕ is defined as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1

ϕ−1(u)du.

Thanks to [4, Proposition 2], the policy πt+1 in Line 3 induced by the ω-potential
mirror map can be obtained with Õ(|A|) computations and can be written as

πt+1(a|s) = σ(ϕ(ηtf
t+1(s, a) + λt+1

s )) ∀s ∈ S, a ∈ A,

where λs ∈ R is a normalization factor to ensure
∑

a∈A πt+1(a|s) = 1 for all s ∈ S ,
and σ(z) = max(z, 0) for z ∈ R. The minimization problem in Line 2 is simplified
to be

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f

t, ϕ−1(0)− λt
s)
∥∥2
L2(vt)

.

When ϕ(x) = ex, we recover an approximation of NPG.
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Convergence Rates

Assumption (A1) (Approximation error). There exists εapprox ⩾ 0 such that, ∀t ⩾ 0,

E
[ ∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2
L2(vt)

]
⩽ εapprox,

where (vt)t⩾0 is a sequence of distributions over states and actions and the expec-
tation is taken over the randomness of AMPO.
Assumption (A2) (Concentrability coefficient). There exists Cv ⩾ 0 such that, ∀t ⩾ 0,

E(s,a)∼vt

[(
dπµ(s)π(a|s)
vt(s, a)

)2 ]
⩽ Cv,

whenever (dπµ, π) is either (d⋆µ, π⋆), (dt+1
µ , πt+1), (d⋆µ, πt), or (dt+1

µ , πt).
Assumption (A3) (Distribution mismatch coefficient). There exists νµ ⩾ 0 such that

max
s∈S

d⋆µ(s)

dtµ(s)
⩽

1

1− γ
max
s∈S

d⋆µ(s)

µ(s)
⩽ νµ, for all times t ⩾ 0.

Theorem 4.3. Let Assumptions (A1), (A2), and (A3) be true. If the step-size
schedule is non-decreasing, i.e., ηt ⩽ ηt+1 for all t ⩾ 0, the iterates of Algorithm 1
satisfy: ∀T ⩾ 0,

V ⋆(µ)− 1

T

∑
t<T

E
[
V t(µ)

]
⩽

1

T

(
D⋆

0

(1− γ)η0
+

νµ
1− γ

)
+

2(1 + νµ)
√
Cvεapprox

1− γ
.

Furthermore, if the step-size schedule is geometrically increasing, i.e., satisfies

ηt+1 ⩾
νµ

νµ − 1
ηt ∀t ⩾ 0,

we have: for every T ⩾ 0,

V ⋆(µ)− E
[
V T (µ)

]
⩽

1

1− γ

(
1− 1

νµ

)T(
1 +

D⋆
0

η0(νµ − 1)

)
+

2(1 + νµ)
√
Cvεapprox

1− γ
.

▷ First result that establishes linear convergence for a PG-based method involving
general policy parameterization and mirror maps.
▷ For the same setting, it is also the first result that establishesO(1/T ) convergence
without regularization.
▷ First result that provides a convergence rate for a PMD-based algorithm that al-
lows any mirror map and non-tabular policies.

Sample complexity for neural network parameterization

Let FΘ be a class of shallow neural networks. At each iteration t of AMPO, we set
vt = dtµ and solve the regression problem in Line 2 of Algorithm 1 through SGD.
Then, thank to Theorem 4.3 and an existing analysis of neural networks [5, Theorem
1], we have the sample complexity of AMPO

Corollary 4.4. In the setting of Theorem 4.3, let the parameterization class FΘ

consist of sufficiently wide shallow ReLU neural networks. Using an exponentially
increasing step-size and solving the minimization problem in Line 2 with SGD, the
number of samples required by AMPO to find an ε-optimal policy with high probabil-
ity is Õ(C2

vν
5
µ/ε

4(1−γ)6), where ε has to be larger than a non-vanishing error floor.
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