

A Novel Framework for Policy Mirror Descent with General Parameterization and Linear Convergence

Carlo Alfano¹, Rui Yuan², Patrick Rebeschini¹

1: Department of Statistics, University of Oxford; 2: Stellantis*

*The work was done prior to joining Stellantis, while the author was at Télécom Paris.

Introduction

Modern policy optimization algorithm, such as TRPO and PPO, owe their success to the use of parameterized policies such as

$$\pi(a|s) \propto \exp(f^{\theta}(s,a)),$$

where f^{θ} is a neural network. However, the use general parameterization schemes still lacks theoretical justification.

Contribution: A novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations and enjoys theoretical quarantees.

Preliminaries

Consider a discounted MDP $(S, A, P, r, \gamma, \mu)$. Given a policy π , define the value function

$$V^{\pi}(s) := \mathbb{E}_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim P(\cdot|s_t, a_t)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \middle| \pi, s_0 = s \right]$$

and the Q-function

$$Q^{\pi}(s,a) := \mathbb{E}_{a_t \sim \pi(\cdot | s_t), s_{t+1} \sim P(\cdot | s_t, a_t)} \bigg[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid \pi, s_0 = s, a_0 = a \bigg].$$

Letting $V^{\pi}(\mu) := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, our objective is for the agent to find an optimal policy

$$\pi^* \in \operatorname{argmax}_{\pi \in (\Delta(\mathcal{A}))} V^{\pi}(\mu).$$

Define the discounted state visitation distribution by

$$d^{\pi}_{\mu}(s) := (1 - \gamma) \mathbb{E}_{s_0 \sim \mu} \left[\sum_{t=0}^{\infty} \gamma^t P(s_t = s \mid \pi, s_0) \right].$$

Mirror Descent. Let $\mathcal{Y} \subseteq \mathbb{R}^{|\mathcal{A}|}$ be a convex set. A *mirror map* $h : \mathcal{Y} \to \mathbb{R}$ is a strictly convex, continuously differentiable and essentially smooth function^a such that $\nabla h(\mathcal{Y}) = \mathbb{R}^{|\mathcal{A}|}$. The convex conjugate of h, denoted by h^* , is given by

$$h^*(x^*) := \sup_{x \in \mathcal{Y}} \langle x^*, x \rangle - h(x), \quad x^* \in \mathbb{R}^{|\mathcal{A}|}$$

The mirror map h induces a *Bregman divergence*, defined as

$$\mathcal{D}_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle$$

where $\mathcal{D}_h(x,y) \ge 0$ for all $x, y \in \mathcal{Y}$. Let $\mathcal{X} \subseteq \mathcal{Y}$ be a convex set and $V : \mathcal{X} \to \mathbb{R}$ be a differentiable function. To solve $\min_{x \in \mathcal{X}} V(x)$, MD consists in the updates: for all $t \ge 0$,

$$\begin{aligned} y^{t+1} &= \nabla h(x^t) - \eta_t \nabla V(x)|_{x=x^t}, \\ x^{t+1} &= \operatorname{Proj}^h_{\mathcal{X}}(\nabla h^*(y^{t+1})) = \operatorname{argmin}_{x \in \mathcal{X}} \mathcal{D}_h(x, \nabla h^*(y^{t+1})). \end{aligned}$$

Notation. At each time t, let $\pi^t := \pi^{\theta_t}$, $f^t := f^{\theta_t}$, $V^t := V^{\pi^t}$, $Q^t := Q^{\pi^t}$, and $d^t_{\mu} := d^{\pi^t}_{\mu}$. Further, for any function $y : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ and distribution v over $\mathcal{S} \times \mathcal{A}$, let $y_s := y(s, \cdot) \in \mathbb{R}^{|\mathcal{A}|}$ and $||y||^2_{L_2(v)} = \mathbb{E}_v[(y(s, a))^2]$. Let $\mathcal{D}_0^{\star} = \mathbb{E}_{s \sim d_u^{\star}}[\mathcal{D}_h(\pi_s^{\star}, \pi_s^0)]$.

 ^{a}h is essentially smooth if $\lim_{x\to\partial\mathcal{Y}} \|\nabla h(x)\|_{2} = +\infty$, where $\partial\mathcal{Y}$ denotes the boundary of \mathcal{Y} .

Policy Mirror Descent

Given a parameterized function class $\mathcal{F}^{\Theta} = \{ f^{\theta} : S \times \mathcal{A} \to \mathbb{R}, \theta \in \Theta \}$, ideally, we would like to execute the exact MD-based algorithm: for all $t \ge 0$ and for all $s \in S$, $f_s^{t+1} = \nabla h(\pi_s^t) + \eta_t (1-\gamma) \nabla_s V^t(\mu) / d_\mu^t(s) = \nabla h(\pi_s^t) + \eta_t Q_s^t,$ (1) $\pi_s^{t+1} = \operatorname{Proj}_{\Delta(\mathcal{A})}^h(\nabla h^*(\eta_t f_s^{t+1})).$

However, there may not be any $\theta^{t+1} \in \Theta$ such that (1) is satisfied for all $s \in S$. To remedy this issue, we propose Approximate Mirror Policy Optimization (AMPO).

Approximate Mirror Policy Optimization

Algorithm 1: Approximate Mirror Policy Optimization
Input: Initial policy π^0 , mirror map h , parameterization class \mathcal{F}^{Θ} , iteration
number T , step-size schedule $(\eta_t)_{t\geqslant 0}$, state-action distribution sequence
$(v_t)_{t \geqslant 0}.$
1: For $t = 0,, T - 1$ do:
2: Obtain $\theta^{t+1} \in \Theta$ such that
$\theta^{t+1} \in \operatorname{argmin}_{\theta \in \Theta} \left\ f^{\theta} - Q^t - \eta_t^{-1} \nabla h(\pi^t) \right\ _{L_2(v_t)}^2.$
3: Update
$\pi_s^{t+1} = \operatorname*{argmin}_{\pi' \in \Delta(A)} \mathcal{D}_h(\pi', \nabla h^*(\eta_t f_s^{\theta^{t+1}})), \ \forall s \in \mathcal{S}.$
Output: $(\pi^1 \pi^T)$

Comparison with previous frameworks

Similarly to AMPO, previous approximations of PMD [1, 2] provide an expression to be optimized. For instance, [1] aim to maximize an expression equivalent to

$$\pi^{t+1} = \operatorname*{argmax}_{\pi^{\theta} \in \Pi(\Theta)} \mathbb{E}_{s \sim d_{\mu}^{t}} [\eta_{t} \langle Q_{s}^{t}, \pi_{s}^{\theta} \rangle - \mathcal{D}_{h}(\pi_{s}^{\theta}, \pi_{s}^{t})],$$
(2)

where $\Pi(\Theta)$ is a given parameterized policy class. The improvement of AMPO over this type of update is twofold.

 \triangleright The parameterized policy class $\Pi(\Theta)$ is often non-convex with respect to θ in practice, which prevents the application of existing proof techniques that rely on the convexity of the tabular parameterization [3]. On the contrary, AMPO avoids this problem thanks to the Bregman projection and the update in Line 2 of Algorithm 1.

> AMPO involves a subroutine optimization procedure that is structurally different from the update in (2). Our approach employs a standard regression procedure, which has been extensively studied and benefits from established solving methods.

A practical class of mirror maps

For $a \in (-\infty, +\infty]$, $\omega \leq 0$, let an ω -potential be an increasing C^1 -diffeomorphism $\phi: (-\infty, a) \to (\omega, +\infty)$ such that

$$\lim_{u \to -\infty} \phi(u) = \omega, \qquad \lim_{u \to a} \phi(u) = +\infty, \qquad \int_0^1 \phi^{-1}(u) du \leqslant \infty.$$

For

$$h_{\phi}(\pi_s) = \sum_{a \in \mathcal{A}} \int_1^{\pi(a|s)} \phi^{-1}(u) du.$$

ntial

$$\pi^{t+1}(a|s) = \sigma(\phi(\eta_t f^{t+1}(s, a) + \lambda_s^{t+1})) \quad \forall s \in \mathcal{S}, a \in \mathcal{A},$$

where $\lambda_s \in \mathbb{R}$ is a normalization factor to ensure $\sum_{a \in \mathcal{A}} \pi^{t+1}(a|s) = 1$ for all $s \in \mathcal{S}$, and $\sigma(z) = \max(z, 0)$ for $z \in \mathbb{R}$. The minimization problem in Line 2 is simplified to be

AMPO performance on Acrobo

300

$$\theta^{t+1} \in \operatorname*{argmin}_{\theta \in \Theta} \left\| f^{\theta} - Q^{t} - \eta_{t}^{-1} \max(\eta_{t-1} f^{t}, \phi^{-1}(0) - \lambda_{s}^{t}) \right\|_{L_{2}(v_{t})}^{2}.$$

When $\phi(x) = e^x$, we recover an approximation of NPG.

Convergence Rates

whenever (d_{μ}^{π}, π) is either $(d_{\mu}^{\star}, \pi^{\star})$, $(d_{\mu}^{t+1}, \pi^{t+1})$, $(d_{\mu}^{\star}, \pi^{t})$, or (d_{μ}^{t+1}, π^{t}) . Assumption (A3) (Distribution mismatch coefficient). There exists $\nu_{\mu} \ge 0$ such that $\max_{s \in \mathcal{S}} \frac{d_{\mu}^{\star}(s)}{d_{\mu}^{t}(s)} \leqslant \frac{1}{1 - \gamma} \max_{s \in \mathcal{S}} \frac{d_{\mu}^{\star}(s)}{\mu(s)} \leqslant \nu_{\mu}, \quad \text{for all times } t \ge 0.$

satisfy: $\forall T \ge 0$,

$$V^{\star}(\mu) - \frac{1}{T} \sum_{t < T} \mathbb{I}$$

$$V^{\star}(\mu) - \mathbb{E}\left[V^{T}(\mu)\right]$$

without regularization.

Sample complexity for neural network parameterization

Corollary 4.4. In the setting of Theorem 4.3, let the parameterization class \mathcal{F}^{Θ} consist of sufficiently wide shallow ReLU neural networks. Using an exponentially increasing step-size and solving the minimization problem in Line 2 with SGD, the number of samples required by AMPO to find an ε -optimal policy with high probability is $\mathcal{O}(C_v^2 \nu_u^5 / \varepsilon^4 (1-\gamma)^6)$, where ε has to be larger than a non-vanishing error floor.

References

- ment learning. In AISTATS, 2022.

[5] Z. Allen-Zhu et al.. Learning and generalization in overparameterized neural networks, going beyond two layers. NeurIPS, 2019.

$$\min_{-\infty} \phi(u) = \omega, \qquad \lim_{u \to a} \phi(u) = +\infty, \qquad \int_{0}^{\pi} \phi^{-1}(u) du$$
tential ϕ , the associated mirror map h_{ϕ} is defined as
$$h_{\phi}(\pi) = \sum_{\alpha} \int_{0}^{\pi(a|s)} \phi^{-1}(u) du$$

any
$$\omega$$
-potential ϕ , the associated mirror map h_{ϕ} is

$$\omega$$
-potential ϕ , the associated mirror map h_{ϕ} is
 $h_{\phi}(\pi_s) = \sum \int^{\pi(a|s)} \phi^{-1}(u)$

$$n_{\phi}(n_s) = \sum_{a \in \mathcal{A}} \int_1^{t} \psi(a) a a.$$

Thanks to [4. Proposition 2] the policy π^{t+1} in Line 3 induced by th

Thanks to [4, Proposition 2], the policy
$$\pi^{t+1}$$
 in Line 3 induced by the ω -poten mirror map can be obtained with $\mathcal{O}(|\mathcal{A}|)$ computations and can be written as

$$\pi^{t+1}(a|a) = \sigma(\phi(n, f^{t+1}(a|a) + \lambda^{t+1})) \quad \forall a \in S, a \in I$$

Assumption (A1) (Approximation error). There exists $\varepsilon_{approx} \ge 0$ such that, $\forall t \ge 0$, $\mathbb{E}\left[\left\|f^{t+1} - Q^t - \eta_t^{-1} \nabla h(\pi^t)\right\|_{L_2(y_t)}^2\right] \leqslant \varepsilon_{\text{approx}},$

where $(v^t)_{t \ge 0}$ is a sequence of distributions over states and actions and the expectation is taken over the randomness of AMPO.

Assumption (A2) (*Concentrability coefficient***).** There exists $C_v \ge 0$ such that, $\forall t \ge 0$, $\left[\left(d^{\pi}(e) \pi(a|e) \right)^2 \right]$

$$\mathbb{E}_{(s,a)\sim v^t}\left[\left(\frac{a_{\mu}(s)\pi(a|s)}{v^t(s,a)}\right)\right] \leqslant C_v,$$

Theorem 4.3. Let Assumptions (A1), (A2), and (A3) be true. If the step-size schedule is non-decreasing, i.e., $\eta_t \leq \eta_{t+1}$ for all $t \ge 0$, the iterates of Algorithm 1

$$\left[V^{t}(\mu)\right] \leqslant \frac{1}{T} \left(\frac{\mathcal{D}_{0}^{\star}}{(1-\gamma)\eta_{0}} + \frac{\nu_{\mu}}{1-\gamma} \right) + \frac{2(1+\nu_{\mu})\sqrt{C_{v}\varepsilon_{\text{approx}}}}{1-\gamma}$$

Furthermore, if the step-size schedule is geometrically increasing, i.e., satisfies

$$\eta_{t+1} \geqslant \frac{\nu_{\mu}}{\nu_{\mu} - 1} \eta_t \qquad \forall t \geqslant 0,$$

 $\leqslant \frac{1}{1-\gamma} \left(1 - \frac{1}{\nu_{\mu}}\right)^{T} \left(1 + \frac{\mathcal{D}_{0}^{\star}}{\eta_{0}(\nu_{\mu} - 1)}\right) + \frac{2(1+\nu_{\mu})\sqrt{C_{v}\varepsilon_{\text{approx}}}}{1-\gamma}$

> First result that establishes linear convergence for a PG-based method involving general policy parameterization and mirror maps.

 \triangleright For the same setting, it is also the first result that establishes O(1/T) convergence

▷ First result that provides a convergence rate for a PMD-based algorithm that allows any mirror map and non-tabular policies.

Let \mathcal{F}^{Θ} be a class of shallow neural networks. At each iteration t of AMPO, we set $v^t = d^t_{\mu}$ and solve the regression problem in Line 2 of Algorithm 1 through SGD. Then, thank to Theorem 4.3 and an existing analysis of neural networks [5, Theorem 1], we have the sample complexity of AMPO

[1] S. Vaswani et al., A general class of surrogate functions for stable and efficient reinforce-

[2] M. Tomar et al.. Mirror descent policy optimization. In ICLR, 2022.

[3] L. Xiao. On the convergence rates of policy gradient methods. JMLR, 2022.

[4] W. Krichene et al.. Efficient bregman projections onto the simplex. In IEEE CDC, 2015.