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Blog Post: Objective and Contributions
Informal definition: In-Context Learning (ICL) is a behavior observed in Large Language
Models (LLMs), where learning occurs from prompts using unmodified model weights.

Question: How can we explain the behavior of ICL in LLMs?

Simplification: We need to simplify the problem. Our focus will be on linear regression
tasks using linear self-attention models with a single head.

Main reference for this blog post

Transformers Learn In-Context by Gradient Descent by Oswald et al. [1].

How:
1 Demonstrate and explain how and why ICL occurs in transformer architectures.
2 Analyze ICL through the lens of optimization theory.
3 Discuss the theoretical framework in [1] to show the equivalence between ICL and
gradient descent.

In-Context Learning for Linear Regression

Formalizing in-context learning

A model demonstrates in-context learning for a
function class H if, for any function h ∈ H , it can
approximate h(xquery) for any new input xquery us-
ing unseen in-context examples {(x i , y i)}C−1i=0 , where
y i = h(x i), and C is the fixed context size, without
modification of the model’s weights.

Goal: To study ICL for linear regression tasks of the form hw (x) = w⊤x from a dataset of
unseen in-context examples {(x i , y i)}C−1i=0 , with x i , w ∈ ℝD and y i ∈ ℝ.

Plan:
▶ Under what conditions can a transformer learn in-context?
▶ How does a transformer learn in-context under these conditions?
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Pre-training Setup

▶ Dataset construction: We sample w ∼ p(w) and C inputs x i ∼ p(x), where C is the
fixed context size. We then compute y i = w⊤x i and prepare the input sequence E .

▶ Model definition: We use linear transformerwhich replace softmax self-attention
with linear self-attention, f (𝜽 , E ) = E +W PW V E (W KE )⊤W QE .

▶ Pre-training: We optimize the model f by minimizing the regression loss on the
query point xquery with context {(x i , y i)}C−1i=0

L(𝜽 ) = 𝔼w ,x


f (𝜽 ,

[
{x i , y i}C−1i=0 , xquery

] )
− yquery
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Linear transformers can learn linear
functions in-context well. The test loss
decreases as the context size increases,
and as the number of layers increases.

Connection Between In-Context Learning and Gradient Descent
Observation: A gradient descent update is a linear transformation of the data.

▶ Write gradient descent update of the least squares loss

Llin
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)
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w⊤x i − y i
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▶ Compute the loss after applying a gradient descent step

Llin

(
w − Δw , {x i , y i}C−1i=0

)
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▶ Let x̂ i = x i and ŷ i = y i + Δw⊤x i , then Llin

(
w − Δw , {x i , y i}C−1i=0

)
= Llin

(
w , {x̂ i , ŷ i}C−1i=0

)
.

Important note: It shows that we can achieve the same loss as after one gradient step
by adjusting the inputs and targets while keeping the weights fixed.

Now,we define a linear transformer that implements one step of gradient descent (GD)
of the least squares loss with initialization w0, which we call a GD-transformer:
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To prove this, it is sufficient to plug in the GD-transformer to obtain the output:(x j
y j

)
←

(x j
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∀j ∈ {0, ... , C−1} and xquery.

Conclusion: We have shown that a linear transformer can be constructed to implement
GD on the least squares loss, which suggests that the GD-transformer has the ability of
ICL. But, would a linear transformer converge to this GD-transformer after pre-training?

A linear transformer learns to implement gradient descent
Question: During pre-training, what loss is the linear transformer optimizing in-context?

▶ The loss of the linear transformer
converges to the loss of the
GD-transformer, which, by
construction, implements one step
of gradient descent.

Question: During pre-training, what is a linear transformer learning to implement?

▶ The predictions and gradients of
the linear transformer converge to
those of the GD-transformer.

Conclusion:
Because the ground truth is the same for both models, it must mean that the models
are converging to the same outputs given the same inputs, which implies that they are
implementing the same function.

Analysis on the Learning Rate of Gradient Descent
▶ The GD learning rate is a key hyperparameter for the GD-transformer construction.
▶ The linear transformer converges to the loss of the GD-transformer specifically for

a single value of the GD learning rate, determined through line search.

Important note: The optimal GD learning rate for the GD-transformer can be analytically
derived by optimizing the quadratic function 𝜂∗ = argmin𝜂∈ℝLlin(w − Δw , {x i , y i}C−1i=0 ).

Conclusions: During pre-training, the linear transformer (1) learns to implement a GD
step and (2) implicitly optimizes the GD learning rate.

How about multiple layers?
We recurrently apply the same layer with the same weights multiple times. Specifically,
for the embedding matrix E (l ) at layer l , we update the linear transformer as follows:

E (l+1) = E (l ) + 𝜆W PW V E (l ) (W KE (l ))⊤W QE (l ) with a dampening factor 𝜆 ∈ (0, 1)

▶ The test losses for both the linear
transformer and the GD-transformer
diverge as the number of layers
increases.

▶ The test loss of the linear transformer
with multiple layers matches that of
the GD-transformer with multiple
layers for a specific value of the
dampening factor, 𝜆 = 0.7.
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Is this behavior unique to transformers?
We apply the same setup to investigate the behavior of uni and bidirectional LSTMs.

▶ LSTMs struggle to learn linear functions in-context as effectively as transformers.
▶ Bidirectional LSTMs perform better, especially with an increased number of layers.

Observations:

▶ Regardless of the number of layers, the
unidirectional LSTM does not
implement a gradient descent step.

▶ For two or more layers, the bidirectional
LSTM behaves increasingly like a
gradient descent step, though the
cosine similarity does not reach 1.

Conclusions and Discussion
In this blog post,

1 We have presented the approach in [1] of the in-context learning (ICL) phenomenon
and we explained how transformers can do ICL through the implementation of a
gradient descent (GD) step.
▶ We discussed how the GD-transformer, by construction, can execute a GD step in-context.
▶ We demonstrated how, during pre-training, the transformer learns to execute a GD step.

2 We replicated and extended the findings of the original paper [1] by:
▶ Providing an analytical solution for the learning rate in the GD-transformer.
▶ Conducting a study on the behavior of uni and bidirectional LSTMs.

3 We discussed some limitations and highlighted potential research directions.

Open questions

▶ Can we identify scaling laws for ICL in large models?
▶ Do these results generalize to different architectures, such as state-space

models (e.g., MAMBA)?
▶ What limitations are inherent to the optimization lens? Could emergent abilities

and memorization [2] suggest alternative mechanisms?
▶ How can other frameworks (e.g., mesa-optimization, meta-learning) help us

better understand ICL in large models?
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