Stochastic Second Order Methods and
Finite Time Analysis of Policy Gradient Methods

Rul Yuan

PhD Thesis Defense - 17 March 2023

TELECOM
Paris

—ho3 1l

O\ Meta Al

',0 IP PARIS

Thank you to

> My advisors: >~ My collaborators:

Robert M. Gower Alessandro Lazaric Francois Roueff

https://fb.workplace.com/profile.php?id=100040658264755

Outline

Outline

1. Stochastic Second Order Methods Optimization

Outline

1. Stochastic Second Order Methods Optimization

A principled approach to design stochastic Newton methods

Convergence guarantees

Outline

1. Stochastic Second Order Methods Optimization

A principled approach to design stochastic Newton methods

Convergence guarantees

2. Finite Time Analysis of Policy Gradient Methods Reinforcement
Learning

Outline

1. Stochastic Second Order Methods Optimization

A principled approach to design stochastic Newton methods

Convergence guarantees

2. Finite Time Analysis of Policy Gradient Methods Reinforcement

Vanilla policy gradient Learning

Natural policy gradient

Outline

1. Stochastic Second Order Methods Optimization

A principled approach to design stochastic Newton methods

Convergence guarantees

2. Finite Time Analysis of Policy Gradient Methods Reinforcement

Vanilla policy gradient Learning

Natural policy gradient

3. Discussion & Connections to each other

— Part | —

Stochastic Second Order Methods
in Optimization

Introduction (Part |)

Artificial Intelligence

Artificial Intelligence

&

Artificial Intelligence

&

©

ChatGPT

Artificial Intelligence

©

ChatGPT

Artificial Intelligence

©

ChatGPT

CAT, DOG, DUCK

Artificial Intelligence

©

ChatGPT

min,,pa f(W)

CAT, DOG, DUCK

Artificial Intelligence Optimization

&

(K %'””III 774 : EE;%E?#;?(&,
. ’f’l ,”””m, RN T AL Tl
A“ O : ' I’III (SO AX AL N/ "
AV A } ",‘0’0“‘:5‘:0:0:‘ '0'0'" "' III
N DO O o oyl

R,
A X
T VY 9.9

N
)
v TrTy\ ‘l" l z
- '\"\'"gl' .'.“\Q '
\:&-. - L e D N4
\ B
/ \ . " i : n l'&
\‘..}.‘35 N) .) J B a £
\"r " \ Y "Q’ £

CAT, DOG, DUCK

Artificial Intelligence Optimization

}:ﬁiﬁ;ﬁ;;ff{'&;,,
RN AL PN
.0":‘::::‘29:003 '0“0“',"’,’,

’.” SN0 9

o 9.9,
| "4,.‘.‘, ,' . 72 P > &

CAT, DOG, DUCK Optimal
solution w*

Gradient descent to solve min,,_pa f(w)

Gradient descent to solve min,,_pa f(w)

Wk | Wk - ;,]k Vf(wk)

Gradient descent to solve min,,_pa f(w)
a.k.a First-order methods

Wk | Wk - ;,]k Vf(wk)

Gradient descent to solve min,, pa f(W)
aka F|rSt'Order methOdS Step size /

/ Learning rate

Wk | Wk - ;,]k Vf(wk)

Gradient descent to solve min,,_pa f(w)
a.k.a First-order methods

W

k

Step size /
Learning rate
/ g

dl

k

v fwh)

A Step size depends on the
scale of the function

Gradient descent to solve min,,_pa f(w)
a.k.a First-order methods

arg min f(w)
weR?

v

W

k

Step size /
Learning rate
/ g

dl

k

v fwh)

A Step size depends on the
scale of the function

Gradient descent to solve min,, pa f(W)
a.k.a First-order methods Step size /

/ Learning rate

W = Wk gk VAW A T
C>0
. . e
arg min f(w) & arg min C X f(w)
weR?

weR?

v

Gradient descent to solve min,, pa f(W)
a.k.a First-order methods Step size /

/ Learning rate

whtl = Wk — pk VAWE) A e e
C>0
. . e
arg min f(w) & arg min C X f(w)
weR4

weR?

Gradient descent to solve min,, pa f(W)
a.k.a First-order methods Step size /

/ Learning rate

whtl = whk — gk vk AT
C>0
. | 4
arg min f(w) & arg min C X f(w)

I — Wk — ;/]kCVf(Wk)A Hard to tune

Invariance of Newton method

Invariance of Newton method

Wk+1 — Wk . anf(wk)_1Vf(wk)

Invariance of Newton method

a.k.a Second-order methods

Wk+1 — Wk . anf(wk)_1Vf(wk)

Invariance of Newton method

a.k.a Second-order methods
whtl = wh — pVHWHTIVIWYH <@ wrt = wh = g VE(CW)) TV CAWR))

Scale invariant, i.e. easy to tune the step size

Invariance of Newton method

a.k.a Second-order methods
Wk+1 — Wk . nvZf(Wk)—l Vf(wk) @ Wk+1 — Wk — 7

Scale invariant, i.e. easy to tune the step size -

—
—
—
—
—
—

A Cost per iteration is O (dB) which is prohibitive when d is large

V(Cfw*)) ™!

V(CAw")

Invariance of Newton method

a.k.a Second-order methods
Wk+1 — Wk . nvZf(Wk)—l Vf(wk) @ Wk+1 — Wk — 7

Scale invariant, i.e. easy to tune the step size -

—
—
—
—

A Cost per iteration is O (dB) which is prohibitive when d is large

Motivations

» Less parameters tuning, e.g. step size

V(Cfw*)) ™!

~ Computational efficiency, as cheap as first order methods

V(CAw")

Invariance of Newton method

a.k.a Second-order methods
Wk+1 — Wk . nvZf(Wk)—l Vf(wk) @ Wk+1 — Wk — 7

Scale invariant, i.e. easy to tune the step size -

—
—
—
—
—

A Cost per iteration is O (d3) which is prohibitive when d is large

Motivations

» Less parameters tuning, e.g. step size

V(Cfw*)) ™!

~ Computational efficiency, as cheap as (stochastic) first order methods

V(CAw")

Sketched Newton-Raphson

Rui Yuan, Alessandro Lazaric, Robert M. Gower
Sketched Newton-Raphson, Society for Industrial and Applied Mathematics (SIAM) Journal on Optimization (SIOPT), 2022.

Context

Context

. Solving non linear equations F(x) = 0 with F : [

Context

o Solving non linear equations F(x) = O with F': R — |

« Main interest: Solving machine learning problems (e.g. generalized linear models)

Context

o Solving non linear equations F(x) = O with F': R — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

Context

. Solving non linear equations F(x) = O with F': RP — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

DF(x) = [VFl(x)--- VFm(x)] e RP*™: transpose of the Jacobian matrix of F at x

Context

. Solving non linear equations F(x) = O with F': RP — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

DF(x) = [VFl(x)--- VFm(x)] e RP*™: transpose of the Jacobian matrix of F at x

(DF (xk)T)T: Moore-Penrose pseudoinverse of DF(x*)'

Context

o Solving non linear equations F(x) = O with F': R — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

/7
/7

DF(x) = [VFl(x)--- VFm(x)] e RP*™M: trarlsp/ose of the Jacobian matrix of F' at x

/7

/7

(DF (xk)T)T: Moore-Penrose pseudoinyerse of DF(x*)"

A Cost per iteration is O (min{pmz, mpz}) which is prohibitive when both p and m are large

Sketch — and — project

Q [Gower and Richtarik, 2015]

Sketch — and — project

& [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — Xk — 7 (DF(xk)T>TF(xk)

11

Sketch — and — project

Q [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — .Xk — 7 (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(MT(x — x*) = — nF(x").

Sketch — and — project

& [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — Xk — 7 (DF(xk)T>TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(xM'(x — x5 = —yF(N .| —— Newton System

Sketch — and — project

@ [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 —)Ck — 7 (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(xM'(x — x5 = —yF(N .| —— Newton System

» Sketched Newton-Raphson (SNR) method

Sketch — and — project

Q [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

X+ =k (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF T (x = x5 = — nF x5, Newton System

» Sketched Newton-Raphson (SNR) method

x**! = arg min ||x — x*|3

xeRP

subjectto S DF(x*)"(x — x*) = — S, F(x¥).

Sketch — and — project

Q [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — Xk — 7 (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(xM'(x — x5 = —yF(N .| —— Newton System

» Sketched Newton-Raphson (SNR) method

x**! = arg min ||x — x*|3

xeRP
subjectto S DF(x*)'(x — x*) = — S F(xX") .| ——

Sketched
Newton System

Sketch — and — project

Q [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — Xk — 7 (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(xM'(x — x5 = —yF(N .| —— Newton System

» Sketched Newton-Raphson (SNR) method

x**! = arg min ||x — x*|3

xeRP
subjectto S DF(x*)'(x — x*) = — S F(xX") .| ——

Sketched
Newton System

S, ~ D: sketching matrix of size m X 7 with 7 << m1, low rank

Sketch — and — project

Q [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — .Xk — 7 (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(xM'(x — x5 = —yF(N .| —— Newton System

» Sketched Newton-Raphson (SNR) method

x**! = arg min ||x — x*|3

xeRP
subjectto S DF(x*)'(x — x*) = — S F(xX") .| ——

Sketched
Newton System

S, ~ D: sketching matrix of size m X 7 with 7 << m1, low rank Cost per iteration O(p)

Decrease dimension using sketching

C
tC
I
I
S
a
V
S
E
R
X
a d
T
<<
m

1 ST
l__'__l

Decrease dimension using sketching
The sketching matrix S ~ 9 a distribution over S € R and 7 < m

ST DF(MT
N EEEEEEEN
T o a EEEEEEE
- .. - EEEEEER
\——'——i EEEEENEBN
m EEEEEEN
L EEEEEEE

Decrease dimension using sketching
The sketching matrix S ~ 9 a distribution over S € R and 7 < m

1

DF(xYT

P

STDF(x%T

P

|

Simple examples of sketches

Simple examples of sketches

0
Sample S = lﬂ =e. - S'DF(x)" = VFj(x)T
0

Simple examples of sketches

0
. Sample S = lﬂ = ¢; - S'DF(x)" = VFj(x)T
0

ay
Average Sample S = l w = Zaiei — S'DF(x)" = ZaiVFl-(x)T

el el

Simple examples of sketches

=¢, = S'DF(x)! = VF(x)'

Average sample S

— Z ae. — S'DF(x)" = Z aiVFl-(x)T

el el

a3
Ay

100 VE(x)T

Batch sample s= 090 =leqe] = sDFOT = |VE@T| er™

001 VF(x)'

Sketched Newton-Raphson (SNR)

x*1 = arg min ||x — x¥||3

xeER?P

subjectto S, DF(x*)T(x —xY = — S, F(x").

Sketched Newton-Raphson (SNR)

x*1 = arg min ||x — x¥||3

xeER?P

subjectto S, DF(x*)T(x —xY = — S, F(x").

Sketched Newton-Raphson (SNR)

x*1 = arg min ||x — x¥||3

xeER?P

subjectto S, DF(x*)T(x —xY = — S, F(x").

DF(xMT(x — x* = — nS| F(x*)

Sketched Newton-Raphson (SNR)

x*1 = arg min ||x — x¥||3
xeRP
subjectto S, DF(x*)T(x —xY = — S, F(x").
xk

DF(xMT(x — x* = — nS| F(x*)
k+1

Convergence theories of SNR

(see paper for technique details and additional properties)

Convergence theories of SNR

(see paper for technique details and additional properties)

* Reformulation as online stochastic gradient descent (SGD)

Convergence theories of SNR

(see paper for technique details and additional properties)

* Reformulation as online stochastic gradient descent (SGD)

* The reformulation has a gratuitous smoothness property

Convergence theories of SNR

(see paper for technique details and additional properties)

* Reformulation as online stochastic gradient descent (SGD)
* The reformulation has a gratuitous smoothness property

* The reformulation has a gratuitous interpolation condition, i.e. zero noise for
stochastic gradient at the optimum

Convergence theories of SNR

(see paper for technique details and additional properties)

* Reformulation as online stochastic gradient descent (SGD)
* The reformulation has a gratuitous smoothness property

* The reformulation has a gratuitous interpolation condition, i.e. zero noise for
stochastic gradient at the optimum

* Global convergence theory and rates of convergence guaranteed under
convex type assumptions

Applications

(see paper for additional applications)

Applications

(see paper for additional applications)

« When , 1.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

Applications

(see paper for additional applications)

« When , 1.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

« When , I.e., single row sampling, new nonlinear Kaczmarz method

Applications

(see paper for additional applications)

« When , I.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

« When , I.e., single row sampling, new nonlinear Kaczmarz method

 Recover the stochastic Newton method [Rodomanov and Kropotov, 2016; Kovalev et al.,
2019] (First global convergence theory)

Applications

(see paper for additional applications)

« When , I.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

« When , I.e., single row sampling, new nonlinear Kaczmarz method

 Recover the stochastic Newton method [Rodomanov and Kropotov, 2016; Kovalev et al.,
2019] (First global convergence theory)

 New method for solving generalized linear models (GLM)

Generalized linear models (GLMS)

Generalized linear models (GLMS)

e (Generalized linear models

]l «—n A
min [f(w) = " Zi=1 ¢,~(al.Tw) + EHW||2

weR?

Generalized linear models (GLMS)

e (Generalized linear models

]l «—n A
min [f(w) = " Zi=1 ¢,~(al.Tw) + EHW||2

Training problem €——
weR?

Generalized linear models (GLMS)

e (Generalized linear models

I A
min [f(w) = —~ Zi=1 ¢,~(al.Tw) + EHW||2

Training problem €——
weR?

Generalized linear models (GLMS)

e (Generalized linear models

I A
min [f(w) = —~ Zizl qbi(al.Tw) + EHW”z

Training problem €——
weR?

Generalized linear models (GLMS)

e Generalized linear models a; := The 1th sample of the dataset
1 ’f y
.) : n T)
Training problem « min [f(W) - Zi=1 Pilaw)+ Zlwl

¢; := The loss over the ith batch of data

Generalized linear models (GLMS)

e Generalized linear models a; := The 1th sample of the dataset
1 ’f y
.) : n T)
Training problem « min [f(W) - Zi=1 Pl w) + S lwl

¢; := The loss over the ith batch of data

Generalized linear models (GLMS)

e (Generalized linear models

Training problem &——

I A
min [f(w) = — 21—1 Cbi(aiTW) +—[Iwll?

weR? n = 2

\

¢; := The loss over the ith batch of data

« We want to solve Vf(w) =0

— 1 & " —
Viw) = - Zi=l ¢pi(a w)a;, + iw =0

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfw) = ! Z'f’ Pla wya; + iw = 0
n =1

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfw) = ! Z'f’ Piawya; + iw = 0
n =1\ /

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfw) = ! Z'f’ Pla wya; + iw = 0
n =1\ /

* Fixed point equations

— — ¢lf(aiTw), fori=1,...,n,

1
w=—A0 € R?.
An

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfw) = ! Z'f’ Pla wya; + iw = 0
n =1\ /

* Fixed point equations

:al an] e R

_ ol _
= —¢a'w), fori=1,...,n, {A

1
w=—A0 € R?.
An

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfw) = ! Z'f’ Pla wya; + iw = 0
n l

=1\ ,

* Fixed point equations

e FF(x) =0where F: |

w

n+d

— — ¢i,(ai-rw)’ fori=1,...,n,

1

= —Ao el

An

— |

n+d -

d

i.e.

and x = |a; w| € |

a, a] e R

A . a n
a :al an]TEIR”

n+d

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfiw) = 1 >
n

n
l

=1 \ /

* Fixed point equations

W

. F(x) = 0 where F : R

* Toss a coin to decide which block to sketch Q?j

Pi(a'wya; + Iw =0

— — ¢i,(aiTW)’ fori=1,...,n,

1

= —Ao el

An

— |

ntd o

d

b

al ceoe an

and x = |a;w| € |

:al an] € R

]TEIR”

n+d

18

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfiw) = 1 >
n

n
l

=1 \ /

* Fixed point equations

With probability b € (0,1)

Pi(a'wya; + Iw =0

= —¢lia'w), fori=1,...,n,

e F(x) =0where F : |

W

n+d

1
= — Ao e R,

An
— R" je.

* Toss a coin to decide which block to sketch Q?j

and x = |a;w| € |

A = :al an] € R
a = :(xl an]TE R"
n+d

18

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfw) = ! Z'f’ Piawya; + iw = 0
n l

=1 \ /

* Fixed point equations

With probability 1 — b

= —¢lia'w), fori=1,...,n,

W

1

= —Ao el

An

d

e F(x) =0where F : |

* Toss a coin to decide which block to sketch Q?j

n+d

— |

n+d -

i.e.

and x = |a;w| € |

A = :al an] € R
a = :(xl an]TE R"
n+d

18

Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfiw) = 1 >
n

n
l

=1 \ /

* Fixed point equations

W

. F(x) = 0 where F : R

* Toss a coin to decide which block to sketch Q?j

. Cost per iteration O(d) when the sketch size is O(1)

Pi(a'wya; + Iw =0

= —¢lia'w), fori=1,...,n,

1

= —Ao el

An

— |

ntd o

d

b

al s an

and x = |a;w| € |

:al an] € R

]TEIR”

n+d

18

Logistic regression for binary classification

(see paper for additional experiments)

a9a | webspam

— 50-TCS
150-TCS
300-TCS
dfSDCA
QTZ
SVRG
SAG

191>

0 5 10 15 20 25 0 50 100 150
wall-clock time (s) wall-clock time (s)

(a)a9a (d : 123, n : 32561) (b) webspam (d : 254, n : 350000)

Figure: Experiments for TCS method applied for generalized linear model.

Logistic regression for binary classification

(see paper for additional experiments)

a9a | webspam

— 50-TCS
150-TCS
300-TCS
dfSDCA
QTZ
SVRG
SAG

191>

0 5 10 15 20 25 0 50 100 150
wall-clock time (s) wall-clock time (s)

(a)a9a (d : 123, n : 32561) (b) webspam (d : 254, n : 350000)

Figure: Experiments for TCS method applied for generalized linear model.

Logistic regression for binary classification

(see paper for additional experiments)

a9a | webspam
| —— 50-TCS
150-TCS A
— 300-TCS Need to
—— dfSDCA tune
~ QTZ the sketch
[S) —— SVRG .
SAG Size
| 0 5 10 15 20 25 0 50 1()9 150
wall-clock time (s) wall-clock time (s)
(a)a9a (d : 123, n : 32561) (b) webspam (d : 254, n : 350000)

Figure: Experiments for TCS method applied for generalized linear model.

Design new stochastic second order methods

Motivations

>~ Develop a second order method for machine learning problems that is

, scales well with the dimension d, and that requires less

SAN: Stochastic Average Newton

Jiabin Chen*, Rui Yuan*, Guillaume Garrigos, Robert M. Gower
SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums, AISTATS, 2022.

Finite-sum minimization problem

Finite-sum minimization problem

* Solving a finite-sum minimization problem

|
min [f(w) = - Zi:l f,-(w)]

weR?

Finite-sum minimization problem

* Solving a finite-sum minimization problem

|
min [f(w) = — Zi:l f,-(w)]

weR?

Finite-sum minimization problem

* Solving a finite-sum minimization problem

|
min [f(w) = — Zi:l f,-(w)]

weR?

Finite-sum minimization problem

* Solving a finite-sum minimization problem

|
. Finding a stationary point of the gradientof f : Vf(w) = — Zn 1 Viw) =0
j A =

SAN: Stochastic Average Newton (1/2)

SAN: Stochastic Average Newton (1/2)

|l «—n
. 1) Rewrite the optimality conditions Vf(w) = —) Vfw) = 0as
n 1=

 Q—
n =) =0,
(2) = Vf(w) € RY, Vie{l,...n}.

SAN: Stochastic Average Newton (1/2)

|l «—n
. 1) Rewrite the optimality conditions Vf(w) = —) Vfw) = 0as
n 1=

 Q—
n =) =0,
(2) = Vf(w) € RY, Vie{l,...n}.

* (n+1) equations

SAN: Stochastic Average Newton (1/2)

|l «—n
. 1) Rewrite the optimality conditions Vf(w) = —) Vfw) = 0as
n 1=

 [—
n =) =0,
(2) = Vf(w) € RY, Vie{l,..n}.

* (n+1) equations

. (n+1) variables [w; 4P ---;an]

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):1271%:0, @) :a,= Viw), Vie({l,..n)
n el i=

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

k+1 k+1 - n k|2
oL = argmin) [la;— o]

l
Ay, . .,0,E R4

n l

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

k+1 k+1 - n k|2
oL = argmin) [la;— o]

l
Ay, . .,0,E R4

n l

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?10@.:0, @) :a,= Viw), Vie({l,..n)
n el i=

N

» 2) P Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

k+1 k+1 - n k|2
oL = argmin) [la;— o]

l
al,...,anEIRd

n l

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and| projectionto its set of solutions:

k+1 k+1 - Z k)2
oL = argmin) [la;— o]

l
Ay,...,0,E R4

n l

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

af“, ...,al = argmin Z?_l |t — |
Ay - - anEIRd -
s.t. %2?21 a; =0
« With probability 1/(n+1), sample the j-th eq. of (2), and project onto the set
of solutions of its at wk:
ajk“,wk“ = argmin ||a; — aijZ lw — w*||?
aj,wele

s.t. V]j.(wk) + sz;(wk)(w — wk) = a;

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?10@.:0, @) :a,= Viw), Vie({l,..n)
n el i=

f
« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

/

* With probability 1/(n+1), samp/e'eq. (1) and project onto its set of solutions:
/

k+1 k+1 ! ' n k2
a1 = argmin B0 flog— o]

Ioap,...a,eR?

/
1 n
/ 1. — . =
| s.t nzizlal 0

« With probability 1/(n+1),|sample the j-th eq. of (2), and project onto the set
of solutions of its linearization at w*:

ajk+1’ Wk+1

= argmin ||a; — ak||?

k ‘ ‘ 2
o, WE R4 /

lw —w

s.t. V]j.(wk) + sz;(wk)(w —wk) = a;

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?104,.:0, @) :a,= Viw), Vie({l,..n)
n el i=

!
« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

/

* With probability 1/(n+1), samp/e'eq. (1) and project onto its set of solutions:
/

k+1 k+1 ! ' n k2
a1 = argmin B0 flog— o]

Ioap,...a,eR?

/
1 n
/ 1. — . =
| s.t nzizlal 0

« With probability 1/(n+1),|sample the j-th eq. of (2), and project onto the set
of solutions of its linearization at wk:

ajk+1’ Wk+1

= argmin ||a; — ak||?

k ‘ ‘ 2
o, WE R4 /

lw —w

s.t. V]j-(wk) + szl-(wk)(w —wk) = a;

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

af“, ...,al = argmin Z?_l |t — |
Ay - - anEIRd -
s.t. %2?21 a; =0
« With probability 1/(n+1), sample the j-th eq. of (2), and|project/onto the set
of solutions of its at wk:
ajk“,wk“ = argmin ||a; — aijZ lw — w*||?
a,-,wele

s.t. V]j.(wk) + sz;(wk)(w — wk) = a;

SAN: Stochastic Average Newton (2/2)

(n+1) equations: (1):12?1%:0, @) :a,= Viw), Vie({l,..n)
n el i=

« 2) £ Sketched Newton Raphson & [vuan et al., 2022]

* With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

af“, ...,al = argmin Z?_l |t — |
Ay - - anEIRd -
s.t. %2?21 a; =0
« With probability 1/(n+1), sample the j-th eq. of (2), and project onto the set
of solutions of its at w*:
ajk“,wk“ = argmin ||a; — aijZ lw — wk||?
aj,wele

s.t. V]j.(wk) + sz;(wk)(w —wk) = a;

What'’s the point by doing this ?

(see paper for technique details and additional properties)

What'’s the point by doing this ?

(see paper for technique details and additional properties)

e |t turns out that SAN

What'’s the point by doing this ?

(see paper for technique details and additional properties)

e |t turns out that SAN

@ is incremental, i.e. samples only one single data point per iteration;

What'’s the point by doing this ?

(see paper for technique details and additional properties)

* |t turns out that SAN
@ is incremental, i.e. samples only one single data point per iteration;

@ is efficient and scales well with the dimension d, i.e. costs O(d) per iteration for
generalized linear models;

What'’s the point by doing this ?

(see paper for technique details and additional properties)

* |t turns out that SAN
@ is incremental, i.e. samples only one single data point per iteration;

@ is efficient and scales well with the dimension d, i.e. costs O(d) per iteration for
generalized linear models;

€ requires less parameter tuning (e.g. learning rate, sketch size).

What'’s the point by doing this ?

(see paper for technique details and additional properties)

* |t turns out that SAN
@ is incremental, i.e. samples only one single data point per iteration;

@ is efficient and scales well with the dimension d, i.e. costs O(d) per iteration for
generalized linear models;

€ requires less parameter tuning (e.g. learning rate, sketch size).

©’? We provide a global linear convergence theory of SAN

What'’s the point by doing this ?

(see paper for technique details and additional properties)

* |t turns out that SAN
@ is incremental, i.e. samples only one single data point per iteration;

@ is efficient and scales well with the dimension d, i.e. costs O(d) per iteration for
generalized linear models;

€ requires less parameter tuning (e.g. learning rate, sketch size).
©’? We provide a global linear convergence theory of SAN

G Using our approach, we develop other new stochastic Newton methods, e.g., SANA and
SNRVM

Logistic regression for binary classification

(see paper for additional experiments)

rcvl | real-sim
1071- —1-5
A — SAG N SAG
_2; 2
SAN i SAN
10~3 3
. SVRG Y — SVRG
S “— 104
=10 = \'\f\v\.\
10
107°
7
10 10—7
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
(a) revl (d : 47236, n : 20242) (b) real-sim (d : 20958, n : 72309)

Figure: Experiments for SAN applied for generalized linear model.

— Part || —

Finite Time Analysis of Policy Gradient
Methods in Reinforcement Learning

Introduction (Part |l)

Impressive Reinforcement Learning (RL) Results

Impressive Reinforcement Learning (RL) Results

Board Game

At last — a computer program that
can beat a champion Go player PAGE 484

Impressive Reinforcement Learning (RL) Results

Board Game Robotic Manipulation

Atl st—a pt - progra ntlt
btl p(pl\

ALLS YS TEMS GO

Impressive Reinforcement Learning (RL) Results

Board Game Robotic Manipulation Game Playing

quot View

NTERNATIDNAL WEEKLY JOURNAL

t last — a computer program that
can beat a champion Go player PAGE 48

ALLSYSTEMS GO

Reinforcement Learning

Sequential decision making problems

AGENT ENVIRONMENT

?

/ \

NG

Reinforcement Learning

Sequential decision making problems

AGENT ENVIRONMENT

? Markov decision Process (MDP)
/ \

N

Reinforcement Learning

Sequential decision making problems

AGENT ENVIRONMENT

Markov decision Process (MDP)

/ \

At time 1

N

Reinforcement Learning

Sequential decision making problems

» States, € &
AGENT ENVIRONMENT

Markov decision Process (MDP)

/ \
At time ¢ \

\ /

Reinforcement Learning

Sequential decision making problems

» States, € &
AGENT ENVIRONMENT

Markov decision Process (MDP)
. State space &

e N
At time 1 \

\ /

Reinforcement Learning

Sequential decision making problems

» States, € &
AGENT . Take action a, € o/ ENVIRONMENT

Markov decision Process (MDP)
. State space &

e N
At time 1 \

\ /

Reinforcement Learning

Sequential decision making problems

» States, € &
AGENT . Take action a, € o/ ENVIRONMENT

Markov decision Process (MDP)

. State space &
. Action space &

e N
At time 1 \

\ /

Reinforcement Learning

Sequential decision making problems

» States, € &

AGENT + Take action a, € &/ ENVIRONMENT
Markov decision Process (MDP)
~ I . State space &
At time ¢ . Action space &
-\

» Nextstates,,.; ~ P(-|s,a,)

Reinforcement Learning

Sequential decision making problems

» States, € &

AGENT . Take action a, € of ENVIRONMENT
Markov decision Process (MDP)
— T\ . State space &
At time 1 . Action space &/
\ Transition probabilities P
ha -

» Nextstates,,.; ~ P(-|s,a,)

Reinforcement Learning

Sequential decision making problems

» States, € &

AGENT . Take action a, € of ENVIRONMENT
Markov decision Process (MDP)
— T\ . State space &
At time 1 . Action space &/
\ Transition probabilities P
ha -

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,a,)

Reinforcement Learning

Sequential decision making problems

» States, € &

AGENT » Take action a, € o ENVIRONMENT
. a, ~ Markov decision Process (MDP)
~— N\ . State space &
At time £ . Action space &
\ Transition probabilities P
— -

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona € o/ , ENVIRONMENT
- g Markov decision Process (MDP)
~ N . State space &
At time 7 . Action space &
\ Transition probabilities P
ha -

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona € o/ , ENVIRONMENT
- g Markov decision Process (MDP)
~ N . State space &
At time 7 . Action space &
\ Transition probabilities P
ha -

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

Q)
[) * —_— | t
arg min Vp(n) = Eso~p, aomy, 501~P(lspa,) l Zl:o ycls at)]

U

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona € o/ , ENVIRONMENT
-y g Markov decision Process (MDP)
~ N\ . State space &
At time 7 . Action space &/
\ Transition probabilities P
ha -

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

0
° . C t .
argmin V (7) := E; _, arr s S~PCs0a) l z o’ c(Sy, Clt)] — Cost function
- —

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona € o/ , ENVIRONMENT
-y g Markov decision Process (MDP)
~ N\ . State space &
At time 7 . Action space &/
\ Transition probabilities P
ha -

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

0
° . C t .
argmin V (7) := £ arr s S~PCs0a) l z o’ c(Sy, Clt)] — Cost function
- —

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona, € of , ENVIRONMENT
-y g Markov decision Process (MDP)
~ N . State space &

. Action space &
 Transition probabilities P

At time 1 \
o Initial state distribution p

\ /

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

0
° . C t .
argmin V (7) := £ arr s S~PCs0a) l z o’ c(Sy, Clt)] — Cost function
- —

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona, € of , ENVIRONMENT
-y g Markov decision Process (MDP)
~ N . State space &

. Action space &
 Transition probabilities P

At time 1 \
o Initial state distribution p

\ /

» Nextstates,,.; ~ P(-|s,a,)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

. m .
arg muin| V() 1= B, 7 5. ~PCls.a) lz y'e(s,, at)] — Cost function

7T S l‘=()

30

Reinforcement Learning

Sequential decision making problems

» States, € &

Ve

p Policy 7w : & — A(H),

/ JC
S5,

AGENT . Takeactiona € of , ENVIRONMENT
-y~ g Markov decision Process (MDP)
~ TN\ . State space &
At time 7 . Action space &
\ Transition probabilities P
S~ _— o Initial state distribution p
» Nextstates,,; ~ P(-|s,a,) « Discounted factor y € (0,1)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

arg min
T

V,(7) :=

_IFONPa‘atNﬂsta Ser1~P(-[5pa) l Z

o0

=0

Z’C(St, at)]

— Cost function

€ R is the density of the distribution over actions at s, € &

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona, € of ,~ ENVIRONMENT
-y g Markov decision Process (MDP)
~ N\ . State space &

. Action space &/

At time 1
\ Transition probabilities P
S~ _— o Initial state distribution p
» Nextstates,,; ~ P(-|s,a,) « Discounted factor y € (0,1)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

° m t
arg gelg}i Vp(e) = _s()rvp, atNJZSt(H), Si+1~P([s,,a,) l Zl:() / C(St, at)]

30

Reinforcement Learning

Sequential decision making problems . Policy 7w : & — A(H),
/7

, @, ., € Ris the density of the distribution over actions at s, € &
» States, € & / P
AGENT . Takeactiona, € of ,~ ENVIRONMENT
-y g Markov decision Process (MDP)
~ N\ . State space &

. Action space &/

At time 1
\ Transition probabilities P
S~ _— o Initial state distribution p
» Nextstates,,; ~ P(-|s,a,) « Discounted factor y € (0,1)

» Getacostc(s,,a,)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

° m t
arg gelg}i Vp(e) = _s()rvp, atNJZSt(H), Si+1~P([s,,a,) l Zl:() / C(St, at)]

30

Objective: arg mingycpa V,(6)

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

o Simplicity

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

o Simplicity

e Easy to implement and use in practice

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

o Simplicity
e Easy to implement and use in practice

* Can solve a wide range of problems (e.g. partially-observable environments)

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

o Simplicity
e Easy to implement and use in practice
* Can solve a wide range of problems (e.g. partially-observable environments)

* Versatility

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

o Simplicity

e Easy to implement and use in practice

* Can solve a wide range of problems (e.g. partially-observable environments)
* Versatility

» Actor-critic [Konda and Tsitsiklis, 2000], hatural PG[Kakade, 2001], policy mirror descent, etc.

Policy gradient (PG) methods

Objective: arg mingycpa V,(6)

o Simplicity
e Easy to implement and use in practice
* Can solve a wide range of problems (e.g. partially-observable environments)
* Versatility
» Actor-critic [Konda and Tsitsiklis, 2000], hatural PG[Kakade, 2001], policy mirror descent, etc.

* Trust-region (e.g. TRPO, PPO [Schulman et al., 2015; 2017]), variance reduction
technigques [Papini et al., 2018; Shen et al., 2019; Xu et al., 2020; Huang et al., 2020]

Main challenge about PG methods

Main challenge about PG methods

A solid theoretical understanding of even the “vanilla”
PG has long been elusive until recent, and it is messy.

Main challenge about PG methods

A solid theoretical understanding of even the “vanilla”
PG has long been elusive until recent, and it is messy.

Unlike value-based methods, sample efficiency in
theory lacks for existing gradient-based RL methods.

Vanilla Policy Gradient

Rui Yuan, Robert M. Gower, Alessandro Lazaric
A general sample complexity analysis of vanilla policy gradient, AISTATS, 2022.

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

e PG methods

Policy gradient methods as gradient descent

Objective: arg mingycpa V,(6)
PG methods

AU+l — gk) _ m VHVP(Q(k))

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

AU+l — gk) _ m VHVP(Q(k))

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(é’)

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

Q(k_l_l) = Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(6’)

. Compute V,V (0):

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

H(k_l_l) = Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(é’)

. Compute V Vp(é’): VoV (0) = Voks) amn). s,~PCls.a) [Z:O y'c(s, at)]

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

Q(k_l_l) = Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(6’)

. Compute V Vp(é’): VoV (0) = Vol o) amn). s,~PClsar) [Z:O y'c(s, at)]

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(é’)

. Compute V Vp(ﬁ): VoV (0) = Vol L) amn). si~PClsa) [Z:O y'c(s, at)]

e

Trajectory 7 = (S, dy, S1, Ay, ***)

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkVHVp(é’(k)) < Gradient of Vp(6’)

. Compute V Vp(ﬁ): VoV, (0) = Vol 2y amn (0). si~P(lspa) [Z:O y'c(s, at)]

e

Trajectory 7 = (S, dy, S1, Ay, ***)

Probability of sampling a trajectory 7:
p(z | 0) = p(sTI o, , (OP(spy | 5y)

34

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkVHVp(é’(k)) < Gradient of Vp(6’)

. Compute V Vp(ﬁ): VoV (0) = Vol L) amn). si~PClsa) [Zio y'c(s, at)]

‘/—(Z:O y'e(s; a») p(z | O)dr

Trajectory 7 = (S, dy, S1, Ay, ***)

Probability of sampling a trajectory 7:
p(z | 0) = p(sTI o, , (OP(spy | 5y)

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — ﬂkV@Vp(Q(k)) < Gradient of Vp(é’)

. Compute V Vp(ﬁ): VoV (0) = Vol L) amn). si~PClsa) [Zio y'c(s, at)]

4/_(Z:O Yes, aﬁ) p(t | O)de

Probability of sampling a trajectory t: = J(tho y'c(s;, @)(Vep(f | 0)/ (T | O)dr
p(z | 6) = p(sTI 7, o (OP(sy 1|5, ,)

Trajectory 7 = (S, dy, S1, Ay, ***)

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(é’)

. Compute V Vp(ﬁ): VoV (0) = Vol L) amn). si~PClsa) [Zio y'c(s, at)]

4/_(Z:O Yes, at>> p(t | O)de

Trajectory 7 = (S, dy, S1, Ay, ***)

Probability of sampling a trajectory t: = J(tho y'c(s;, @)(Vep(f | 0)/ (T | O)dr
(z | 0) = p(s) L2 7s, o (DP(Syyy | Sy ap) FARE
P P sd, r+1 172> %) _ [Ep(7:|(9) (ZIZO }/tC(St, at)>]

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(é’)

. Compute V Vp(ﬁ): VoV (0) = Vol L) amn). si~PClsa) [Zio y'c(s, at)]

4/_(Z:O Yes, at>> p(t | O)de

Trajectory 7 = (S, dy, S1, Ay, ***)

Probability of sampling a trajectory t: = J(tho y'c(s;, @)(Vep(f | 0)/)p(t | O)dr
: N\
(01 6) = Pl 1, (OP(s, | 51.a) -
P P50 t'=0""sa, r+1 172> %) _ [Ep(7:|(9) (tho?’tc(sta at)>]

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

e PG methods

gr+D — g g

. Compute V,V (0): Vol =VeE

Trajectory 7 = (S, dy, S1, Ay, ***)

/

Step size

Vé’Vp(e(k)) . Gradient of V (6)

o0
5
So~ps A~ (0), 8.1 ~P(-|spa;) [Zt:O Y C(St’ at)]

—]z

" Ye(sa)) Vop(e | O)dr

Probability of sampling a trajectory t: = J(tho y'c(s;, aﬁ)(Vep(T | 0)/ (T | O)dr

P | 0) = s, o (OYP(s,41 |5y)

= Epp)

=

= -
=
. =
=
=

. —
=

34

Policy gradient methods as gradient descent

Objective: arg miny_pa V,(0)

Step size

e PG methods /

9(k+1) — Q(k) — nkV@Vp(é’(k)) < Gradient of Vp(é’)

. Compute V Vp(ﬁ): VoV (0) = Vol L) amn). si~PClsa) [Zio y'c(s, at)]

4/_(Z:O Yes, at>> p(t | O)de

Trajectory 7 = (S, dy, S1, Ay, ***)

Probability of sampling a trajectory t: = J(tho y'c(s;, aﬁ)(Vep(T | 0)/ i)Pz | O)dz
p(z | 0) = p(so; g7 o (O)P (s | 1 ap) e TN
0% '=0"s,.a, r+1 172> %) _ [Ep(7:|(9) (Z . y'e(s,, at)>

— [Ep(fle) _ Zt=0 }/tc (Sta at) 2t’=0 Velog ﬂstf,a (9)]

Vanilla policy gradient

Vanilla policy gradient

. Recall Vv,V (0) =

- N _
tho yie(s, a) Zr’:O Volog,,,(0)

—p(rlo) |

Vanilla policy gradient

. Recall v,V (0) =, _tho y'e(s, at)zf= Volog,,,(0)

 Compute an empirical estimator of the gradient by sampling m truncatead
trajectories 7 = (SO, Ao, S15A1s *** 5 SH_1> aH_l)

Vanilla policy gradient

. Recall v,V (0) =, _tho y'e(s, at)zf= Volog,,,(0)

 Compute an empirical estimator of the gradient by sampling m truncatead
trajectories 7 = (SO, Ao, S15A1s *** 5 SH_1> aH_l)

A 1l «m L
e 2 : 2 : { A AN 2 : o

Vanilla policy gradient

. Recall v,V (0) =, _tho y'e(s, at)zf= Volog,,,(0)

 Compute an empirical estimator of the gradient by sampling m truncatead
trajectories 7 = (SO, Ao, S15A1s *** 5 SH_1> aH_l)

A 1 m o
Vi V0) = — Zi:l tho yie(st,al) - zt,zo Volog 7y, ,(0)
o Vanilla PG (REINFORCE [wiliams, 1992], GPOMDP [Baxter and Bartlett, 2001])

(k+1) — pgk) _ . X, (k)
grD = g® — v, v (6P)

Current literatures of vanilla PG: fragmentary |

Current literatures of vanilla PG: fragmentary |

 Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] VS stochastic PG [Papini et al., 2019,
Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

36

Current literatures of vanilla PG: fragmentary |

 Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] VS stochastic PG [Papini et al., 2019,
Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

* Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average

regret to the global optimum [zhang et al., 2020b, Liu et al., 2020]

36

Current literatures of vanilla PG: fragmentary |

 Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] VS stochastic PG [Papini et al., 2019,
Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

* Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [zhang et al., 2020b, Liu et al., 2020]

* Different RL settings: softmax tabular policy w/o different regularizations [Agarwal et al., 2019,
Zhang et al., 2020a,b, Mei et al., 2020], FiIsher-non-degenerate policy [Liu et al., 2020, Ding et al., 2021]

36

Current literatures of vanilla PG: fragmentary |

 Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] VS stochastic PG [Papini et al., 2019,
Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

* Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [zhang et al., 2020b, Liu et al., 2020]

* Different RL settings: softmax tabular policy w/o different regularizations [Agarwal et al., 2019,
Zhang et al., 2020a,b, Mei et al., 2020], FiIsher-non-degenerate policy [Liu et al., 2020, Ding et al., 2021]

* Different assumptions: Lipschitz and smooth policy [Liu et al., 2020, Zhang et al., 2020c, Xiong et al.,
2021], bijection between the primal and the dual space [zhang et al., 2020a]

36

Current literatures of vanilla PG: fragmentary |

 Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] VS stochastic PG [Papini et al., 2019,
Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

* Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [zhang et al., 2020b, Liu et al., 2020]

* Different RL settings: softmax tabular policy w/o different regularizations [Agarwal et al., 2019,
Zhang et al., 2020a,b, Mei et al., 2020], FiIsher-non-degenerate policy [Liu et al., 2020, Ding et al., 2021]

* Different assumptions: Lipschitz and smooth policy [Liu et al., 2020, Zhang et al., 2020c, Xiong et al.,
2021], bijection between the primal and the dual space [zhang et al., 2020a]

. Large mini-batch (e.g. O(e~1), O(e™?)) per iteration for stochastic updates [Papini et al..
2019, Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

36

Contribution

Contribution

* Ageneral PG analysis with weaker assumptions

Contribution

* Ageneral PG analysis with weaker assumptions

e Unify much of the fragmented results in the literature under one guise without lost
of the performance.

Contribution

* Ageneral PG analysis with weaker assumptions

e Unify much of the fragmented results in the literature under one guise without lost
of the performance.

. Recover existing O(e™) sample complexity guarantees with weaker
assumptions for wider ranges of parameters (e.g. mini-batch m from 1 to O(e %))

Contribution

* Ageneral PG analysis with weaker assumptions

e Unify much of the fragmented results in the literature under one guise without lost
of the performance.

. Recover existing O(e™) sample complexity guarantees with weaker
assumptions for wider ranges of parameters (e.g. mini-batch m from 1 to O(e %))

. New O(e™>) sample complexity for global optimum guarantees with additional
relaxed weak gradient domination assumption, including Fisher-non-degenerate
parametrized policies as special case

Contribution

* Ageneral PG analysis with weaker assumptions

e Unify much of the fragmented results in the literature under one guise without lost
of the performance.

. Recover existing O(e™) sample complexity guarantees with weaker
assumptions for wider ranges of parameters (e.g. mini-batch m from 1 to O(e %))

. New O(e™>) sample complexity for global optimum guarantees with additional
relaxed weak gradient domination assumption, including Fisher-non-degenerate
parametrized policies as special case

37

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

. We assume that, for some A, B, C > 0 and all @ € R¥, the stochastic
gradient satisfies

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

. We assume that, for some A, B, C > 0 and all @ € R¥, the stochastic
gradient satisfies

= 19, V,@12| <24(V,0) = v+ 5V VE@) |12 +

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

. We assume that, for some A, B, C > 0 and all @ € R¥, the stochastic
gradient satisfies

= 19, V,@12| <24(V,0) = v+ 5V VE@) |12 +

Here V* is the optimum cost function.

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

. We assume that, for some A, B, C > 0 and all @ € R¥, the stochastic
gradient satisfies

= 19, V,@12| <24(V,0) = v+ 5V VE@) |12 +

Here V* is the optimum cost function.

VH©) = E| ZH: y'c(s, a,)|is the expected truncated total cost function.
f—

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

. We assume that, for some A, B, C > 0 and all @ € R¥, the stochastic
gradient satisfies

= 19, V,@12| <24(V,0) = v+ BV VE@) |12 +

| S——
Suboptimality

gap
Here V* is the optimum cost function.

V}j’(e) = I [Z:l y'c(s,, at)] IS the expected truncated total cost function.

Main assumption: ABC Assumption

& [Knhaled and Richtarik, 2020]

. We assume that, for some A, B, C > 0 and all @ € R¥, the stochastic
gradient satisfies

= 19, V,@12| <24(V,0) = v+ 51V VE@) |12 +

S e N—
Suboptimality Exact

gap gradient

Here V* is the optimum cost function.

V}j’(e) = I [Z:l y'c(s,, at)] IS the expected truncated total cost function.

Simple examples of ABC Assumption

ABC Assumption : E [Wmvp(e)nz] < 2A(V(0) — VE)+ BV VEO) | +

Simple examples of ABC Assumption

ABC Assumption : E [Wmvp(e)nz] < 2A(V(0) — VE)+ BV VEO) | +

e If H =m = oo, then ABC Assumption holds with the exact gradient. That is,

Simple examples of ABC Assumption

ABC Assumption : E [Wmvp(e)nz] < 2A(V(0) — VE)+ BV VEO) | +

e If H =m = oo, then ABC Assumption holds with the exact gradient. That is,

V, V(@) =VV(), and A=C=0, B=1;

Simple examples of ABC Assumption

ABC Assumption : E [19,,V,@)I1?| < 24(V,(0) -)+ BV VIO +C

e If H =m = oo, then ABC Assumption holds with the exact gradient. That is,

V, V(@) =VV(), and A=C=0, B=1;

e IfA =0andB = 1, then ABC Assumption recovers the bounded variance of
the stochastic gradient assumption [Ghadimi and Lan, 2013].

Simple examples of ABC Assumption

ABC Assumption : E [Wmvp(e)nz] < 2A(V(0) — VE)+ BV VEO) | +

e If H =m = oo, then ABC Assumption holds with the exact gradient. That is,

V, V(@) =VV(), and A=C=0, B=1;

e IfA =0andB = 1, then ABC Assumption recovers the bounded variance of
the stochastic gradient assumption [Ghadimi and Lan, 2013].

E[IVVE@©) -V, VO] < C

Simple examples of ABC Assumption

ABC Assumption : E [Wmvp(e)nz] < 2A(V(0) — VE)+ BV VEO) | +

e If H =m = oo, then ABC Assumption holds with the exact gradient. That is,

V, V(@) =VV(), and A=C=0, B=1;

e IfA =0andB = 1, then ABC Assumption recovers the bounded variance of
the stochastic gradient assumption [Ghadimi and Lan, 2013].

E[IVVE@©) -V, VO] < C
= E[IV,, V@I < IIVVEO)*+C

Sample complexity under ABC Assumption

Sample complexity under ABC Assumption

. With a set of parameters (7, K, H), first-order stationary point convergence:

Sample complexity under ABC Assumption

. With a set of parameters (7, K, H), first-order stationary point convergence:

min E[|VV,0®)]] = O(?)
0<k<K-1

Sample complexity under ABC Assumption

. With a set of parameters (7, K, H), first-order stationary point convergence:

min_E[|VV,@®)]] = O(?)
0<k<K-1

T Total number of iterations

Sample complexity under ABC Assumption

. With a set of parameters (7, K, H), first-order stationary point convergence:

min_E[|VV,@®)]] = O(?)
0<k<K-1

T Total number of iterations

. Sample complexity (i.e., single step interaction (s,, a,) with the environment among
single sampled trajectory per iteration):

Sample complexity under ABC Assumption

. With a set of parameters (7, K, H), first-order stationary point convergence:

min_E[|VV,@®)]] = O(?)
0<k<K-1

T Total number of iterations

. Sample complexity (i.e., single step interaction (s,, a,) with the environment among
single sampled trajectory per iteration):

« For the exact PG ():

Applications

Applications

» Different settings that satisfy ABC Assumption

Applications

» Different settings that satisfy ABC Assumption

* Softmax with log barrier regularization

Applications

» Different settings that satisfy ABC Assumption
* Softmax with log barrier regularization

» Softmax with entropy regularization

Applications

» Different settings that satisfy ABC Assumption
» Softmax with log barrier regularization
» Softmax with entropy regularization

* Expected Lipschitz and smooth policy (Gaussian and softmax policies)

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_ClNﬂ'S(@) valOg ﬂs,a(Q)H < F.

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_ClNﬂ'S(@) valOg ﬂs,a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_ClNﬂ'S(@) valOg ﬂs,a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

. 1
19,V @017 < (1=—=)IVVE@)|? + =

m m

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_ClNﬂ'S(@) valOg ﬂs,a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

U

" 1
[V, V@017 < (1=—=)IVVE©O)]*

m m

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_ClNﬂ'S(@) valOg ﬂs,a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

U

" 1
[V, V@017 < (1=—=)IVVE©O)]*

m m

o Sample complexity:

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_CZNﬂ'S(@) valOg ﬂS,a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

U

" 1
[V, V@017 < (1=—=)IVVE©O)]*

m m

« Sample complexity: Wider range of parameters

2L
me |l, —
€2 .

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_CZNﬂ'S(@) valOg ﬂs’a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

U

" 1
[V, V@017 < (1=—=)IVVE©O)]*

m m

« Sample complexity: Wider range of parameters

2L
me |1, —
€2 .

Expected Lipschitz and smooth (E-LS) policy

& repinietal. 20101 (GGaussian and softmax policies satisfy E-LS)

« There exists constants G, F > 0 such that for each state s € &', we have

= oen)| 1 Volog 7 (0|17 | < G7,

_CZNﬂ'S(@) valOg ﬂS,a(Q)H < F.

« ABC Assumption holds withA =0, B=1 - 1/mand C = v/m. That is,

n | %
- 2 Himi2
IV, Y, O] < (1=—=)IVVOI +—
. T Wider range of parameters
Sample complexity: S
me |1, —
€2 -

A Not sample efficiency

Natural Policy Gradient

Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies, ICLR, 2023.

Context

Objective: arg mingycpa V,(6)

Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient

Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient

* Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient
* Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

 NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient
* Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction
 NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

* Linear convergence of NPG is established for tabular case [Xiao, 2022]

Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient
* Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

 NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

* Linear convergence of NPG is established for|tabular case|[xiao, 2022]

Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient
* Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

 NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

* Linear convergence of NPG is established for|tabular case|[xiao, 2022]

Motivations

> Extend linear convergence of NPG from tabular to function approximation regime.

Natural policy gradient

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

Qs.4(0):=

atNﬂst(e) ’ St+ 1 NP() | Staat)

>

o0

=0

y'c(s, a,)

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

Qs.(0):=E

A o0):= 0, (0) -

atNﬂst(e) ’ St+ 1 NP() | Staat)

2,

~a'~7,(6) [Qs,a'(‘g)]

o0

VG a)

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

Qs.(0):=E

A o0):= 0, (0) -

atNﬂst(e) ’ St+ 1 NP() | Staat)

* Policy gradient theorem [Sutton et al., 2000]

2,

~a'~7,(6) [Qs,a'(‘g)]

o0

VG a)

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

_ o
Qsaa(e):: - a7, (0), Sy 1~P(|s.ay) Zt:() 4 C(St’ at)
As,a(e)zz Qs,a(e) T _a’Nyz'S(H)[QS,a’(Q)]

* Policy gradient theorem [Sutton et al., 2000]

VoV,(0) =

1 — y _(S,a)NQZ(@) [As,a(e) Vﬁlog ﬂs,a(e)]

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

Qs.(0):=E

Ay o0):= Q, ,(0) —
* Policy gradient theorem [Sutton et al., 2000]

1
VoV,(0) = 5.a)~D(0)

CltNﬂSt(e)a St+1NP(.|St’at) i Zt—
_a/NﬂS(H)[Qs,a’(Q)]

/'

o0

VG a)

Stationary distribution of the MDP

A, (0)Vlog m, ,(0))

1 —vy

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

0, .(0):=E
A o0):= 0, ,(0) -

* Policy gradient theorem [Sutton et al., 2000]

* Natural policy gradient

1
VoV,(0) = 5.a)~D(0)

CltNﬂSt(e)a St+1NP(.|St’at) i Zt—
_a/NﬂS(H)[Qs,a’(Q)]

/'

o0

VG a)

Stationary distribution of the MDP

A, (0)Vlog m, ,(0))

1 —vy

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

0, .(0):=E
A o0):= 0, ,(0) -

* Policy gradient theorem [Sutton et al., 2000]

* Natural policy gradient

1
VoV,(0) = 5.a)~D(0)

CltNﬂSt(e)a St+1NP(.|St’at) i Zt—
_a/NﬂS(H)[Qs,a’(Q)]

/'

o0

VG a)

Stationary distribution of the MDP

A, (0)Vlog m, ,(0))

1 —vy

AU+ — gl _ m

VoV, (0W)

Natural policy gradient

« State-action cost function (a.k.a Q-function) & advantage function

Qs.(0):=E

Ay o0):= Q, ,(0) —
* Policy gradient theorem [Sutton et al., 2000]

1
VoV,(0) = 5.a)~D(0)

* Natural policy gradient

F(6) =

CltNﬂSt(e)a St+1NP(.|St’at) i Zt—
_a/NﬂS(H)[Qs,a’(Q)]

/

o0

VG a)

Stationary distribution of the MDP

A, (0)Vlog m, ,(0))

1 —vy

AU+ — gl _ m

VoV, (0W)

= (5.0)~D(0) [Volog 7, (0)(Vylog ﬂs,a(ﬁ))T] . Fisher information matrix

Natural policy gradient

With log-linear policies

« State-action cost function (a.k.a Q-function) & advantage function

o0

Qsaa(e):: - a7, (0), Sy 1~P(|s.ay) Zt:() th(St’ at)
As,a(e):z Qs,a(e) T _a’Nyz'S(H)[QS,a’(Q)]
* Policy gradient theorem [Sutton et al., 2000] /

1
VoV, 0) = — Ea0-90 A, (0)Vlog m, ,(0))

Stationary distribution of the MDP

* Natural policy gradient

Ot = gl _ . V@vp((g(k})

F(0) = —(S’a)N@(H)[Velog 7, (O)(Vylog ﬂs’a(é’))T] . Fisher information matrix

Natural policy gradient Log-linear policy:

, : . T
With log-linear policies r (0) = — PP
| za’eﬂ CAP gbgaﬂ

« State-action cost function (a.k.a Q-function) & advantage function

i 00
Qs 0= o @), scipClsna | Dy 7' C(50 @)
As,a(e):z Qs,a(e) T _a’Nyz'S(H)[QS,a’(Q)]
* Policy gradient theorem [Sutton et al., 2000] /

1
VoV, 0) = — Ea0-90 A, (0)Vlog m, ,(0))

Stationary distribution of the MDP

* Natural policy gradient

Ot = gl _ . V@vp(g(k))

F(0) = —(S’a)N@(H)[Velog 7, (O)(Vylog ﬂs,a(é’))T] . Fisher information matrix

Natural policy gradient Log-linear policy:

, : . T
With log-linear policies e () = — PPl
o za’eﬂ CXP ST,a’p

» State-action cost function (a.k.a Q-function) & advantage function Feature map ¢, , € R? over § X &/

i 00
Qs 0= o @), scipClsna | Dy 7' C(50 @)
As,a(e):z Qs,a(e) T _a’Nyz'S(H)[QS,a’(Q)]
* Policy gradient theorem [Sutton et al., 2000] /

1
VoV, 0) = — Ea0-90 A, (0)Vlog m, ,(0))

Stationary distribution of the MDP

* Natural policy gradient

Ot = gl _ . V@vp(g(k))

F(0) = —(S’a)N@(H)[Vglog 7, (O)(Vylog st’a(é’))T] . Fisher information matrix

NPG with compatible function approximation

NPG with compatible function approximation

 Compatible function approximation

NPG with compatible function approximation

 Compatible function approximation

L(w,0,0) = E(o |(W Vylogz, (6) — A, (6))]

NPG with compatible function approximation

 Compatible function approximation

L(w,0,0) = E(o |(W Vylogz, (6) — A, (6))]

e NPG can be rewritten as

NPG with compatible function approximation

 Compatible function approximation

L(w,0,0) = E(o |(W Vylogz, (6) — A, (6))]

e NPG can be rewritten as

O+ — gk) _ nkwik), Wa((k) € arg min L(w, 0% P (OWY)

weR?

NPG with compatible function approximation

 Compatible function approximation

L(w,0,0) = E(o |(W Vylogz, (6) — A, (6))]

e NPG can be rewritten as

O+ — gk) _ nkwik), Wa((k) € arg min L(w, 0% P (OWY)

weR?

NPG with compatible function approximation

 Compatible function approximation

L(w,0,0) = E(o |(W Vylogz, (6) — A, (6))]
~————
Linear approximation of the advantage function

e NPG can be rewritten as

O+ — gk) _ nkwik), Wik) € arg min L(w, 0% P (OWY)

weR?

NPG with log-linear as policy mirror descent

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

7, (0) =

za’eszi CAP qb;':aﬂ

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

7, (0) =

 NPG with log-linear can also be written as 2 e XD B0

nS(H(k“)) = arg min {nk(cbgk)wik), p) + KL(p, nS(H(k)))}
PEA(H)

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

7, (0) =

 NPG with log-linear can also be written as 2 ye P 0

ﬂS(H(k“)) =larg min {nk(ﬁ)gk)wik), p) + KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

. (0) =
5.a(0) S g0

 NPG with log-linear can also be written as

ﬂS(H(k“)) =larg min {nk(cbgk)wik), p) + KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the centered feature maps

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

ﬂS(H(k“)) =larg min {nk(ﬁ)gk)wik), p) + KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the centered feature maps

is,a(e(k)) - = Vﬁlog ﬂs,a(g(k)) — ¢S,a o _a’NJZ'S(@(k))[¢S,Cl’]

NPG with log-linear as policy mirror descent
Log-linear policy:

exp ¢ST 0

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

ﬂS(H(k“)) =larg min {nk(ﬁ)gk)wik), p) + KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the centered feature maps

¢S,a(9(k)) - = Vﬁlog ﬂs,a(g(k)) — ¢S,a o _a’NﬂS(Q(k))[¢S,a’]

KL(p, g) = Zaeﬂ p,log(p,/q,) is the Kullback-Leibler (KL) divergence for p, g € A(HA)

NPG with log-linear as policy mirror descent
Log-linear policy:
exp¢ST,a6’

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

ﬂS(H(k“)) =larg min {nk(ﬁ)gk)wik), p) + KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the centered feature maps

¢S,a(9(k)) - = Vﬁlog ﬂs,a(g(k)) — ¢S,a o _a’NﬂS(Q(k))[¢S,a’]

KL(p, g) = Zaeﬂ p,log(p,/q,) is the Kullback-Leibler (KL) divergence for p, g € A(HA)

* Connection with Policy Iteration

NPG with log-linear as policy mirror descent
Log-linear policy:
exp¢ST,a6’

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

ﬂS(H(k“)) =larg min {nk(cbgk)wik), p) + KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the centered feature maps

¢S,a(9(k)) - = Vﬁlog ﬂs,a(e(k)) — gbs,a o _a’NﬂS(Q(k))[¢S,a’]

KL(p, g) = Zaeﬂ p,log(p,/q,) is the Kullback-Leibler (KL) divergence for p, g € A(HA)

* Connection with Policy Iteration

7(0“D) = arg min {n(A0"),p)} with AOD):=[A,,(6V)], € R
peEA(A) ’

NPG with log-linear as policy mirror descent
Log-linear policy:
exp¢ST,a6’

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

ﬂS(H(k“)) =larg min {nk(cbgk)wik), p) +KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the centered feature maps

¢S,a(9(k)) - = Vﬁlog ﬂs,a(e(k)) — gbs,a o _a’NﬂS(Q(k))[¢S,a’]

KL(p, g) = Zaeﬂ p,log(p,/q,) is the Kullback-Leibler (KL) divergence for p, g € A(HA)

* Connection with Policy Iteration

7(0“D) = arg min {n(A0"),p)} with AOD):=[A,,(6V)], € R
peEA(A) ’

NPG with log-linear as policy mirror descent
Log-linear policy:
exp¢ST,a6’

7, (0) =

 NPG with log-linear can also be written as 2 e XP il

ﬂS(H(k“)) =larg min {nk(cbgk)wik), p) +KL(p, ﬂS(H(k)))} — Policy mirror descent
PEA(A)

Cbgk) e RI¥1Xd is 3 matrix whose rows consist of the/ centered feature maps

¢S,a(9(k)) - = Vﬁlog ﬂs,a(e(k)) — gbs,a o _a’NﬂS(Q(k))[¢S,a’]

KL(p, g) = Zaeﬂ p,log(p,/q,) is the Kullback-Leibler (KL) divergence for p, g € A(HA)

* Connection with Policy Iteration

7,(0“*D) = arg min {nA07)p)} with AO) :=[A,,(0“)], € R
peEA(A) ’

Convergence theory

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
1@ ®, 7,0HD)) + KL(z,(0%1), 7,00
< n@OwW, py + KL(p, 7,(0%)) — KL(p, 7,(** D))

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
i @EwE, 7(0%*D)) + KL(z (0% D), 7, (D))
< i @Pw P, p) + KL(p, 2,(0™)) — KL(p, z,(0**1))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
i @EwE, 7(0%*D)) + KL(z (0% D), 7, (D))
< i @Pw P, p) + KL(p, 2,(0™)) — KL(p, z,(0**1))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
i @EwE, 7(0%*D)) + KL(z (0% D), 7, (D))
< i @Pw P, p) + KL(p, 2,(0™)) — KL(p, z,(0**1))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

JZS(H("“)) = arg min {nk(cbgk)wik), p) + KL(p, nS(H(k)))}
PEA(L)

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
1 PEwH, 7 (0%+D)) + KL(7 (%), 7,(6™))
< (@O, p) + KL(p, 7,(0™)) — KL(p, 7, (0*+V))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

z(0* V) = arg min {n(PPw®, p) + KL(p, z,(6")) } 1, —> 00
PEA(L)

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
1 PEwH, 7 (0%+D)) + KL(7 (%), 7,(6™))
< (@O, p) + KL(p, 7,(0™)) — KL(p, 7, (0*+V))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

z(0* V) = arg min {n(PPw®, p) + KL(p, z,(6")) } 1, —> 00
PEA(L)

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
1 PEwH, 7 (0%+D)) + KL(7 (%), 7,(6™))
< (@O, p) + KL(p, 7,(0™)) — KL(p, 7, (0*+V))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

z (0% V) = arg min {n(PPw™, p) + KL(p, z,(6™)) } 1, —> 00
PEA(L)

Convergence theory

* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
1 PEwH, 7 (0%+D)) + KL(7 (%), 7,(6™))

< n@OwW, py + KL(p, 7,(0%)) — KL(p, 7,(** D))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

7 (0%D) = arg min DMy (k), + KL(p, 7. (6%
(6%7) = arg min [p) +KL(p,z (0P}, .

Behave more and more like policy iteration

Convergence theory 2

Convergence theory 2

« Consequently, we obtain an 6(6_2) sample complexity for NPG

Convergence theory 2

« Consequently, we obtain an 6(6‘2) sample complexity for NPG

« Similar linear convergence and @(6‘2) sample complexity results are also
established for QO-NPG

Convergence theory 2

« Consequently, we obtain an 6(6_2) sample complexity for NPG

« Similar linear convergence and @(6‘2) sample complexity results are also
established for QO-NPG

* Sublinear convergence for both NPG and Q-NPG with arbitrary large constant
step size

Discussion

& Connections to each other

51

* SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

* SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

* The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

* SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

* The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

* The linear convergence analysis of NPG with log-linear policy is extended to
general parametrization [Alfano et al., 2023]

SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

The linear convergence analysis of NPG with log-linear policy is extended to
general parametrization [Alfano et al., 2023]

Stochastic second order methods for optimizing the expected cost in RL (e.g.
sketched NPG ?)

Conclusion

A principled approach to
design stochastic Newton methods (Part 1)
A better understanding and sample efficiency

iIn gradient-based RL (Part |l)

52

List
of
Papers

* A Novel Framework for Policy Mirror Descent with General Parametrization and Linear
Convergence, preprint, 2023.
Carlo Alfano, Rui Yuan, Patrick Rebeschini

* Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies, ICLF

2

023

4 4

Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao

* A general sample complexity analysis of vanilla policy gradient, AISTATS 2022

2

\ui Yuan, Robert M. Gower, Alessandro Lazaric

* SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums, AISTATS 2022
Jiabin Chen*, Rui Yuan®, Guillaume Garrigos, Robert M. Gower

» Sketched Newton-Raphson, SIAM 2022

2

obert M. Gower

\ui Yuan, Alessandro Lazaric, R

53

Thank you !

@ References

Robert M. Gower and Peter Richtarik. Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and
Applications, 36(4):1660—1690, 2015.

A. Rodomanov and D. Kropotov. A superlinearly-convergent proximal newton-type method for the optimization of finite sums,
in Proceedings of The 33rd International Conference on Machine Learning, vol. 48 of Proceedings of Machine Learning
Research, PMLR, 20-22 Jun 2016, pp. 2597-2605.

Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtarik. Stochastic newton and cubic newton methods with simple local
linear-quadratic rates. 2019.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information Processing Systems, volume 12.
MIT Press, 2000.

Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems, volume 14. MIT Press,
2001.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1889-1897, Lille, France, 07—09 Jul 2015. PMLR.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic variance-reduced
policy gradient. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 4026—4035.
PMLR, 2018.

Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy gradient. In Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
5729—- 5738. PMLR, 09—-15 Jun 2019

55

@ References

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive variance reduction. In
International Conference on Learning Representations, 2020.

Feihu Huang, Shangqgian Gao, Jian Pei, and Heng Huang. Momentum-based policy gradient methods, 2020.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning,
8:229-256, 1992.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence Research, 15:319-350,
Nov 2001.

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. 2019.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence rates of softmax policy
gradient methods. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 6820-6829. PMLR, 13—18 Jul 2020.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Smoothing policies and safe policy gradients, 2019.

Yanli Liu, Kaiging Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced) policy gradient and
natural policy gradient methods. In Advances in Neural Information Processing Systems, volume 33, pages 7624—-7636, 2020
Huaging Xiong, Tengyu Xu, Yingbin Liang, and Wei Zhang. Non-asymptotic convergence of adam-type reinforcement
learning algorithms under markovian sampling. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10460—
10468, May 2021.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational policy gradient method for
reinforcement learning with general utilities. In Advances in Neural Information Processing Systems, volume 33, pages
4572-4583. Curran Associates, Inc., 2020a.

56

@ References

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement learning with
reinforce, 2020D.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient methods to (almost)
locally optimal policies. SIAM Journal on Control and Optimization, 58(6):3586—3612, 2020c.

Yuhao Ding, Junzi Zhang, and Javad Lavaei. On the global convergence of momentum-based policy gradient, 2021.
Ahmed Khaled and Peter Richtarik. Better theory for sgd in the nonconvex world, 2020.

Saeed Ghadimi and Guanghui Lan. Stochastic firstand zeroth-order methods for nonconvex stochastic programming.
SIAM journal on optimization, 23 (4):2341-2368, 2013.

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning Research, 23(282):1-36,
2022.

Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems 12, pages 1057-1063. MIT
Press, 2000.

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm using bregman functions.
SIAM Journal on Optimization, 3(3):538—-543, 1998.

Gower, Robert M., Aaron Defazio, and Mike Rabbat. Stochastic Polyak Stepsize with a Moving Target. In Advances in
neural information processing systems, 13th Annual Workshop on Optimization for Machine Learning (OPT2021), 2021
Fatkhullin, llyas, Jalal Etesami, Niao He, and Negar Kiyavash (2022). Sharp Analysis of Stochastic Optimization under
Global Kurdyka-t.ojasiewicz Inequality. In Advances in Neural Information Processing Systems

57

Back-up Slides

Stochastic Newton method (SNM)

[Kovalev et al., 2019]

* Solving a finite-sum minimization problem

| «—n
. Finding a stationary point of the gradientof f : Vf(x) = — Z 1 Vi(x) =0
7 At =

Stochastic Newton method (SNM)

[Kovalev et al., 2019]

* Solving a finite-sum minimization problem
| [
i o) = 2,9

| «—n
. Finding a stationary point of the gradientof f : Vf(x) = — Z 1 Vi(x) =0
7 At =

Stochastic Newton method (SNM)

[Kovalev et al., 2019]

* Solving a finite-sum minimization problem
| [
i o= 2)

| «—n
. Finding a stationary point of the gradientof f : Vf(x) = — Z 1 Vi(x) =0
7 At =

Stochastic Newton method (SNM)

[Kovalev et al., 2019]

* Solving a finite-sum minimization problem
|
i o) =2 3)

| «—n
. Finding a stationary point of the gradientof f : Vf(x) = — Z 1 Vi(x) =0
7 At =

Stochastic Newton method (SNM)

[Kovalev et al., 2019]

* Solving a finite-sum minimization problem

. , |
Training problem < min [f(X) = —Zizlfi(X)]

xeR4 n

| «—n
Finding a stationary point of the gradientof f : Vf(x) = — Z 1 Vi(x) =0
7 At =

Objective: Vfx) = ! Z’fl V£(x) =0
n i=1

Objective: Vfx) = ! Z’fl V£(x) =0
n =1

* Rewrite the problem as

1 n
—ZV]‘;() = 0, and X
=

e F(x;w;) =0where F : |

(n+1)d

— |

« Sketching matrix : based on subsampling

matrices of the f; functions

e.

, fori=1,....n

blocks and the Hessian

SNM is a special case of SNR!

Objective: Vfx) = 1 27 Vi(x) =0
n i=1

* Rewrite the problem as

1 n
—ZV]‘;() = 0, and X
=

. F(x;w;) = 0where F : RtDd 5 RUrthd

« Sketching matrix : based on subsampling
matrices of the f; functions

e.

, fori=1,....n

blocks and the Hessian

60

SNM is a special case of SNR!

Objective: Vfx) = ! 2’_’ V£(x) =0
n i=1

* Rewrite the problem as

1 n
—) V() =0, and x =, fori=1...n
n

=1

. F(x;w) = 0where F : R"Dd RIt+Dd 5 o

o Sketching matrix : based on subsampling blocks and the Hessian
matrices of the f; functions

Consequently, establish the first global convergence theory of SNM

60

Overview of convergence results for vanilla PG

Table 1: Overview of different convergence results for vanilla PG methods. The darker cells contain our new
results. The light cells contain previously known results that we recover as special cases of our analysis, and
extend the permitted parameter settings. White cells contain existing results that we could not recover under

Figure from [Yuan et al., 2022]

our general analysis.

Guarantee”™ Setting™™ (our I;esfl‘lel;‘:?rfel’)ol d) Bound Remarks
ABC Thm. 3.4 O(e~?) | Weakest asm.
Sample '
complexity of . We;aker asm.;
stochastic PG BLLS Papini (2020) o (%) Wider range_ozf parameters; |
for FOSP Cor. 4.7 Recover O(e™“) for exact PG;
Improved smoothness constant
(. —1 Recover linear convergence for the
Sample ABC + PL Thm. H.2 O(e™) exact PG
complexity of ABC + (14) Thm. C.2 O(e™3) | Recover O(e~!) for the exact PG
stochastic PG BE-LS + FI + ~ 3
for GO compatible Cor. 4.14 O(e™°) | Improved by € compared to Cor. 4.7
Sample ABC + (14) Cor. C.1 O(e*) | Weakest asm.
P E-LS + FI + Liu et al. (2020) ~, —ay | Weaker asm.;
complexity of compatible Cor. F.2 O(e™) Wider range of t
stochastic PG pat . F. ge of parameters
for AR Constant step size;
Softmax + Zhang et al. (2021b)) () Wider range of parameters;
log barrier (28) Cor. 4.11 Extra phased learning step unnec-
essary
Softmax + Agarwal et al. (2021) _9 B
log barrier (28) Cor. E.5 O((en)N Nmproved by iy
Mei et al. (2020) 1
Iteration Softmax (25) Thm. C.2 O(e™)
complexity of Softmax + Mei et al. (2020) linear
the exact PG entropy (130) Thm. H.2 H
for GO LS + bijection - -
H Pi]DG Zhang et al. (2020a) O(e™)
Tabular + PPG Xiao (2022) O(e™)
LQR Fazel et al. (2018) linear

* Type of convergence. PG: policy gradient; FOSP: first-order stationary point; GO: global optimum; AR: average

regret to the global optimum.

** Setting. bijection: Asm.l in Zhang et al. (2020a) about occupancy distribution; PPG: analysis also holds for the

projected PG; Tabular: direct parametrized policy; LQR: linear-quadratic regulator.

61

A hierarchy between the assumptions

Figure from [Yuan et al., 2022]

Figure 1: A hierarchy between the assumptions we present throughout the chapter. An arrow indicates an

implication.

Softmax with log barrier (28)

Gaussian policy (71)
(unbounded action space)

Gaussian policy (71)

v

v

(bounded action space)

~

LS

N

Softmax with entropy (130)

N

Softmax (25)

62

Overview of convergence results for NPG

Figure from [Yuan et al., 2023]

Table 1: Overview of different convergence results for NPG methods in the function approximation
regime. The darker cells contain our new results. The light cells contain previously known results
for NPG or Q-NPG with log-linear policies that we have a direct comparison to our new results.
White cells contain existing results that do not have the same setting as ours, so that we could not
make a direct comparison among them.

Setting Rate | Reg. C.S. LS.” Pros/cons compared to our work
Linear convergence
gl 2 NPG ol L T Linear v v Better concentrability coefficients C,
[Cayci et al., 2021]
Weaker assumptions on the approximation
Off-policy NAC with log-linear Linear v error with Lo norm instead of L., norm,;
[Chen and Theja Maguluri, 2022] They use adaptive increasing stepsize, while
we use non-adaptive increasing stepsize
Q-NPG with log-linear Linear v Their relative condition number depends
[Alfano and Rebeschini, 2022] on t, while ours is independent to ¢
Q-NPG/NPG with log-linear .
/(this work) ° L 4
Sublinear convergence
PMD for linear MDP O(L) Y
[Zanette et al., 2021, Hu et al., 2022] vk
Two-layer neural NAC O(-L) v
[Wang et al., 2020] vk
Two-layer neural NAC 1
[Cayci et al., 2022] O(x) d d
NPG with smooth policies O(1) v
[Agarwal et al., 2021] vk
NAC under Markovian sampling
with smooth policies O(%) v
[Xu et al., 2020]
NPG with smooth and
Fisher-non-degenerate policies O(%) v
[Liu et al., 2020]
(%;;Zi;fl:? ;ﬁ?;glzef]x O(ﬁ) v They have better error floor than ours
Weaker assumptions on the approximation
Off-policy NAC with log-linear O 1) / error with Lo norm instead of L., norm;
[Chen et al., 2022] k They use adaptive increasing stepsize, while
we use non-adaptive increasing stepsize
Q-NPG/NPG with log-linear O(1) v
(this work) &

* Reg.: regularization; C.S.: constant stepsize; I.S.: increasing stepsize.

63

