
Stochastic Second Order Methods and
Finite Time Analysis of Policy Gradient Methods

Rui Yuan
PhD Thesis Defense - 17 March 2023

Alessandro Lazaric

Thank you to

‣ My collaborators:‣ My advisors:

Robert M. Gower François Roueff

https://fb.workplace.com/profile.php?id=100040658264755

Outline

￼3

Outline

1. Stochastic Second Order Methods

￼3

Optimization

Outline

1. Stochastic Second Order Methods

• A principled approach to design stochastic Newton methods

• Convergence guarantees

￼3

Optimization

Outline

1. Stochastic Second Order Methods

• A principled approach to design stochastic Newton methods

• Convergence guarantees

2. Finite Time Analysis of Policy Gradient Methods

￼3

Optimization

Reinforcement
Learning

Outline

1. Stochastic Second Order Methods

• A principled approach to design stochastic Newton methods

• Convergence guarantees

2. Finite Time Analysis of Policy Gradient Methods

• Vanilla policy gradient

• Natural policy gradient

￼3

Optimization

Reinforcement
Learning

Outline

1. Stochastic Second Order Methods

• A principled approach to design stochastic Newton methods

• Convergence guarantees

2. Finite Time Analysis of Policy Gradient Methods

• Vanilla policy gradient

• Natural policy gradient

3. Discussion & Connections to each other

￼3

Optimization

Reinforcement
Learning

— Part I —
Stochastic Second Order Methods

in Optimization

Introduction (Part I)

￼6

Artificial Intelligence

￼6

Artificial Intelligence

￼6

Artificial Intelligence

￼6

Artificial Intelligence

￼6

Artificial Intelligence

￼6

Artificial Intelligence

￼minw∈ℝd f(w)

￼6

Artificial Intelligence Optimization

￼f(w)
￼minw∈ℝd f(w)

￼6

Artificial Intelligence Optimization

Optimal
solution ￼w*

￼f(w)
￼minw∈ℝd f(w)

￼7

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

wk+1 = wk − ηk ∇f(wk)

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Step size /  
Learning rate

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Step size /  
Learning rate

Step size depends on the  
scale of the function

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Step size /  
Learning rate

Step size depends on the  
scale of the function

arg min
w∈ℝd

f(w)

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Step size /  
Learning rate

Step size depends on the  
scale of the function

⇔
C > 0

arg min
w∈ℝd

f(w) arg min
w∈ℝd

C × f(w)
C > 0

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Step size /  
Learning rate

Step size depends on the  
scale of the function

⇔
C > 0

arg min
w∈ℝd

f(w) arg min
w∈ℝd

C × f(w)
C > 0

wk+1 = wk − ηkC∇f(wk)⇎wk+1 = wk − ηk ∇f(wk)

Gradient descent to solve ￼minw∈ℝd f(w)

￼7

a.k.a First-order methods

wk+1 = wk − ηk ∇f(wk)

Step size /  
Learning rate

Step size depends on the  
scale of the function

⇔
C > 0

arg min
w∈ℝd

f(w) arg min
w∈ℝd

C × f(w)
C > 0

wk+1 = wk − ηkC∇f(wk)⇎wk+1 = wk − ηk ∇f(wk) Hard to tune

Gradient descent to solve ￼minw∈ℝd f(w)

￼8

Invariance of Newton method

￼8

wk+1 = wk − η∇2f(wk)−1 ∇f(wk)

Invariance of Newton method

￼8

a.k.a Second-order methods

wk+1 = wk − η∇2f(wk)−1 ∇f(wk)

Invariance of Newton method

￼8

a.k.a Second-order methods

⇔wk+1 = wk − η∇2f(wk)−1 ∇f(wk) wk+1 = wk − η∇2(Cf(wk))−1 ∇(Cf(wk))

Scale invariant, i.e. easy to tune the step size

Invariance of Newton method

￼8

a.k.a Second-order methods

⇔wk+1 = wk − η∇2f(wk)−1 ∇f(wk) wk+1 = wk − η∇2(Cf(wk))−1 ∇(Cf(wk))

Scale invariant, i.e. easy to tune the step size

Cost per iteration is ￼ which is prohibitive when ￼ is largeO (d3) d

Invariance of Newton method

￼8

a.k.a Second-order methods

⇔wk+1 = wk − η∇2f(wk)−1 ∇f(wk) wk+1 = wk − η∇2(Cf(wk))−1 ∇(Cf(wk))

Scale invariant, i.e. easy to tune the step size

Cost per iteration is ￼ which is prohibitive when ￼ is largeO (d3) d

Motivations

‣ Less parameters tuning, e.g. step size

‣ Computational efficiency, as cheap as (stochastic) first order methods

Invariance of Newton method

￼8

a.k.a Second-order methods

⇔wk+1 = wk − η∇2f(wk)−1 ∇f(wk) wk+1 = wk − η∇2(Cf(wk))−1 ∇(Cf(wk))

Scale invariant, i.e. easy to tune the step size

Cost per iteration is ￼ which is prohibitive when ￼ is largeO (d3) d

Motivations

‣ Less parameters tuning, e.g. step size

‣ Computational efficiency, as cheap as (stochastic) first order methods

Invariance of Newton method

Sketched Newton-Raphson

Rui Yuan, Alessandro Lazaric, Robert M. Gower
Sketched Newton-Raphson, Society for Industrial and Applied Mathematics (SIAM) Journal on Optimization (SIOPT), 2022.

Context

￼10

Context

• Solving non linear equations with F(x) = 0 F : ℝp → ℝm

￼10

Context

• Solving non linear equations with F(x) = 0 F : ℝp → ℝm

• Main interest: Solving machine learning problems (e.g. generalized linear models)

￼10

Context

• Solving non linear equations with F(x) = 0 F : ℝp → ℝm

• Main interest: Solving machine learning problems (e.g. generalized linear models)

• Newton-Raphson (NR) method

￼10

xk+1 = xk − η (DF(xk)⊤)† F(xk)

Context

• Solving non linear equations with F(x) = 0 F : ℝp → ℝm

• Main interest: Solving machine learning problems (e.g. generalized linear models)

• Newton-Raphson (NR) method

• : transpose of the Jacobian matrix of at DF(x) = [∇F1(x)⋯∇Fm(x)] ∈ ℝp×m F x

￼10

xk+1 = xk − η (DF(xk)⊤)† F(xk)

Context

• Solving non linear equations with F(x) = 0 F : ℝp → ℝm

• Main interest: Solving machine learning problems (e.g. generalized linear models)

• Newton-Raphson (NR) method

• : transpose of the Jacobian matrix of at DF(x) = [∇F1(x)⋯∇Fm(x)] ∈ ℝp×m F x

• : Moore-Penrose pseudoinverse of (DF(xk)⊤)† DF(xk)⊤

￼10

xk+1 = xk − η (DF(xk)⊤)† F(xk)

Context

• Solving non linear equations with F(x) = 0 F : ℝp → ℝm

• Main interest: Solving machine learning problems (e.g. generalized linear models)

• Newton-Raphson (NR) method

• : transpose of the Jacobian matrix of at DF(x) = [∇F1(x)⋯∇Fm(x)] ∈ ℝp×m F x

• : Moore-Penrose pseudoinverse of (DF(xk)⊤)† DF(xk)⊤

￼10

xk+1 = xk − η (DF(xk)⊤)† F(xk)

Cost per iteration is ￼ which is prohibitive when both ￼ and ￼ are largeO (min{pm2, mp2}) p m

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

￼11

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) . Newton System

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) . Newton System

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Newton System

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Newton System

Sketched
Newton System

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

￼ : sketching matrix of size ￼ with ￼ , low rankSk ∼ 𝒟 m × τ τ ≪ m

Newton System

Sketched
Newton System

￼Sketch − and − project
 ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

￼ : sketching matrix of size ￼ with ￼ , low rankSk ∼ 𝒟 m × τ τ ≪ m Cost per iteration ￼O(p)

Newton System

Sketched
Newton System

Decrease dimension using sketching

￼12

Decrease dimension using sketching
The sketching matrix ￼ a distribution over ￼ and ￼S ∼ 𝒟 S ∈ ℝm×τ τ ≪ m

￼12

￼τ

￼m

￼S⊤

Decrease dimension using sketching
The sketching matrix ￼ a distribution over ￼ and ￼S ∼ 𝒟 S ∈ ℝm×τ τ ≪ m

￼12

￼τ

￼m ￼m

￼p

￼S⊤ ￼DF(xk)⊤

Decrease dimension using sketching
The sketching matrix ￼ a distribution over ￼ and ￼S ∼ 𝒟 S ∈ ℝm×τ τ ≪ m

￼12

￼τ￼τ

￼m ￼m

￼p

￼p

=

￼S⊤ ￼DF(xk)⊤ = ￼S⊤DF(xk)⊤

Simple examples of sketches

￼13

Simple examples of sketches

• Sample S =

0
0
1
0

= ej ⟹ S⊤DF(x)⊤ = ∇Fj(x)⊤

￼13

Simple examples of sketches

• Sample S =

0
0
1
0

= ej ⟹ S⊤DF(x)⊤ = ∇Fj(x)⊤

•
Average sample S =

a1

0
a3
a4

= ∑
i∈I

aiei ⟹ S⊤DF(x)⊤ = ∑
i∈I

ai ∇Fi(x)⊤

￼13

Simple examples of sketches

• Sample S =

0
0
1
0

= ej ⟹ S⊤DF(x)⊤ = ∇Fj(x)⊤

•
Average sample S =

a1

0
a3
a4

= ∑
i∈I

aiei ⟹ S⊤DF(x)⊤ = ∑
i∈I

ai ∇Fi(x)⊤

•
Batch sample S =

1 0 0
0 0 0
0 1 0
0 0 1

= [ei ej ek] ⟹ S⊤DF(x)⊤ =
∇Fi(x)⊤

∇Fj(x)⊤

∇Fk(x)⊤

∈ ℝτ×p

￼13

Sketched Newton-Raphson (SNR)

￼14

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Sketched Newton-Raphson (SNR)

￼14

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Sketched Newton-Raphson (SNR)

￼14

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Solution space

￼S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk)

Sketched Newton-Raphson (SNR)

￼14

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Solution space

Projection

￼xk

￼xk+1
￼S⊤

k DF(xk)⊤(x − xk) = − ηS⊤
k F(xk)

Convergence theories of SNR
(see paper for technique details and additional properties)

￼15

Convergence theories of SNR
(see paper for technique details and additional properties)

• Reformulation as online stochastic gradient descent (SGD)

￼15

Convergence theories of SNR
(see paper for technique details and additional properties)

• Reformulation as online stochastic gradient descent (SGD)

• The reformulation has a gratuitous smoothness property

￼15

Convergence theories of SNR
(see paper for technique details and additional properties)

• Reformulation as online stochastic gradient descent (SGD)

• The reformulation has a gratuitous smoothness property

• The reformulation has a gratuitous interpolation condition, i.e. zero noise for
stochastic gradient at the optimum

￼15

Convergence theories of SNR
(see paper for technique details and additional properties)

• Reformulation as online stochastic gradient descent (SGD)

• The reformulation has a gratuitous smoothness property

• The reformulation has a gratuitous interpolation condition, i.e. zero noise for
stochastic gradient at the optimum

• Global convergence theory and rates of convergence guaranteed under
convex type assumptions

￼15

Applications
(see paper for additional applications)

￼16

Applications
(see paper for additional applications)

• When , i.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

Sk = Im

￼16

Applications
(see paper for additional applications)

• When , i.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

Sk = Im

• When , i.e., single row sampling, new nonlinear Kaczmarz methodSk = ei

￼16

Applications
(see paper for additional applications)

• When , i.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

Sk = Im

• When , i.e., single row sampling, new nonlinear Kaczmarz methodSk = ei

• Recover the stochastic Newton method [Rodomanov and Kropotov, 2016; Kovalev et al.,
2019] (First global convergence theory)

￼16

Applications
(see paper for additional applications)

• When , i.e. no sketch, new global convergence theory for the original
Newton-Raphson method under strictly weaker assumptions

Sk = Im

• When , i.e., single row sampling, new nonlinear Kaczmarz methodSk = ei

• Recover the stochastic Newton method [Rodomanov and Kropotov, 2016; Kovalev et al.,
2019] (First global convergence theory)

• New method for solving generalized linear models (GLM)

￼16

Generalized linear models (GLMs)

￼17

Generalized linear models (GLMs)

• Generalized linear models

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]

Generalized linear models (GLMs)

• Generalized linear models

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]Training problem

Generalized linear models (GLMs)

• Generalized linear models

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]

n := Number of samples

Training problem

Generalized linear models (GLMs)

• Generalized linear models

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]

￼ The ￼th sample of the datasetai := i
n := Number of samples

Training problem

Generalized linear models (GLMs)

• Generalized linear models

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]

￼ The ￼th sample of the datasetai := i

￼ The loss over the ￼th batch of dataϕi := i

n := Number of samples

Training problem

Generalized linear models (GLMs)

• Generalized linear models

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]

￼ The ￼th sample of the datasetai := i

￼ The loss over the ￼th batch of dataϕi := i

n := Number of samples

Regularization on ￼wTraining problem

Generalized linear models (GLMs)

• Generalized linear models

• We want to solve ∇f(w) = 0

￼17

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
ϕi(a⊤

i w) +
λ
2

∥w∥2]

￼ The ￼th sample of the datasetai := i

￼ The loss over the ￼th batch of dataϕi := i

∇f(w) =
1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

n := Number of samples

Regularization on ￼wTraining problem

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

￼18

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

￼18

￼−αi

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .
￼ A := [a1 ⋯ an] ∈ ℝd×n

α := [α1 ⋯ αn]⊤ ∈ ℝn

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

• where , i.e. and F(x) = 0 F : ℝn+d → ℝn+d p = m = n + d x = [α; w] ∈ ℝn+d

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .
￼ A := [a1 ⋯ an] ∈ ℝd×n

α := [α1 ⋯ αn]⊤ ∈ ℝn

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

• where , i.e. and F(x) = 0 F : ℝn+d → ℝn+d p = m = n + d x = [α; w] ∈ ℝn+d

• Toss a coin to decide which block to sketch

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .
￼ A := [a1 ⋯ an] ∈ ℝd×n

α := [α1 ⋯ αn]⊤ ∈ ℝn

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

• where , i.e. and F(x) = 0 F : ℝn+d → ℝn+d p = m = n + d x = [α; w] ∈ ℝn+d

• Toss a coin to decide which block to sketch

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .
￼ A := [a1 ⋯ an] ∈ ℝd×n

α := [α1 ⋯ αn]⊤ ∈ ℝn

With probability ￼b ∈ (0,1)

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

• where , i.e. and F(x) = 0 F : ℝn+d → ℝn+d p = m = n + d x = [α; w] ∈ ℝn+d

• Toss a coin to decide which block to sketch

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .
￼ A := [a1 ⋯ an] ∈ ℝd×n

α := [α1 ⋯ αn]⊤ ∈ ℝn

With probability ￼1 − b

Tossing-coin-sketch (TCS) for solving GLMs
Objective: ￼∇f(w) =

1
n ∑

n

i=1
ϕ′￼i(a⊤

i w)ai + λw = 0

• Fixed point equations

• where , i.e. and F(x) = 0 F : ℝn+d → ℝn+d p = m = n + d x = [α; w] ∈ ℝn+d

• Toss a coin to decide which block to sketch

• Cost per iteration when the sketch size is O(d) O(1)

￼18

￼−αi

￼
αi = − ϕ′￼i(a⊤

i w), for i = 1,…, n,

w =
1
λn

Aα ∈ ℝd .
￼ A := [a1 ⋯ an] ∈ ℝd×n

α := [α1 ⋯ αn]⊤ ∈ ℝn

Logistic regression for binary classification
(see paper for additional experiments)

￼19

(a) a9a (￼ , ￼)d : 123 n : 32561 (b) webspam (￼ , ￼)d : 254 n : 350000

Figure: Experiments for TCS method applied for generalized linear model.

Logistic regression for binary classification
(see paper for additional experiments)

￼19

(a) a9a (￼ , ￼)d : 123 n : 32561 (b) webspam (￼ , ￼)d : 254 n : 350000

Figure: Experiments for TCS method applied for generalized linear model.

Logistic regression for binary classification
(see paper for additional experiments)

￼19

(a) a9a (￼ , ￼)d : 123 n : 32561 (b) webspam (￼ , ￼)d : 254 n : 350000

Figure: Experiments for TCS method applied for generalized linear model.

Need to
tune
the sketch
size

￼20

Motivations

‣ Develop a second order method for machine learning problems that is incremental,

efficient, scales well with the dimension d, and that requires less parameter tuning.

Design new stochastic second order methods

SAN: Stochastic Average Newton

Jiabin Chen*, Rui Yuan*, Guillaume Garrigos, Robert M. Gower
SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums, AISTATS, 2022.

Finite-sum minimization problem

￼22

Finite-sum minimization problem

￼22

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
fi(w)]

• Solving a finite-sum minimization problem

Finite-sum minimization problem

￼22

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
fi(w)]

n := Number of samples

• Solving a finite-sum minimization problem

Finite-sum minimization problem

￼22

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
fi(w)]

￼ The loss over the ￼th batch of datafi(w) := i

n := Number of samples

• Solving a finite-sum minimization problem

Finite-sum minimization problem

￼22

min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
fi(w)]

￼ The loss over the ￼th batch of datafi(w) := i

n := Number of samples

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of : f ∇f(w) =
1
n ∑

n

i=1
∇fi(w) = 0

SAN: Stochastic Average Newton (1/2)

￼23

SAN: Stochastic Average Newton (1/2)

• 1) Rewrite the optimality conditions as∇f(w) =
1
n ∑

n

i=1
∇fi(w) = 0

￼23

￼
(1)

1
n ∑

n

i=1
αi = 0,

(2) αi = ∇fi(w) ∈ ℝd, ∀i ∈ {1,…, n} .

SAN: Stochastic Average Newton (1/2)

• 1) Rewrite the optimality conditions as∇f(w) =
1
n ∑

n

i=1
∇fi(w) = 0

• (n+1) equations ((n+1)d rows)

￼23

￼
(1)

1
n ∑

n

i=1
αi = 0,

(2) αi = ∇fi(w) ∈ ℝd, ∀i ∈ {1,…, n} .

SAN: Stochastic Average Newton (1/2)

• 1) Rewrite the optimality conditions as∇f(w) =
1
n ∑

n

i=1
∇fi(w) = 0

• (n+1) equations ((n+1)d rows)

• (n+1) variables [w; α1; ⋯; αn] ∈ ℝ(n+1)d

￼23

￼
(1)

1
n ∑

n

i=1
αi = 0,

(2) αi = ∇fi(w) ∈ ℝd, ∀i ∈ {1,…, n} .

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

￼24

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

￼24

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

• With probability 1/(n+1), sample the -th eq. of (2), and project onto the set
of solutions of its linearization at :

j
wk

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

￼
αk+1

j , wk+1 = arg min
αj,w∈ℝd

∥αj − αk
j ∥2 + ∥w − wk∥2

∇2fj(wk)

 s.t. ∇fj(wk) + ∇2fj(wk)(w − wk) = αj

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

• With probability 1/(n+1), sample the -th eq. of (2), and project onto the set
of solutions of its linearization at :

j
wk

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

￼
αk+1

j , wk+1 = arg min
αj,w∈ℝd

∥αj − αk
j ∥2 + ∥w − wk∥2

∇2fj(wk)

 s.t. ∇fj(wk) + ∇2fj(wk)(w − wk) = αj

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

• With probability 1/(n+1), sample the -th eq. of (2), and project onto the set
of solutions of its linearization at :

j
wk

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

￼
αk+1

j , wk+1 = arg min
αj,w∈ℝd

∥αj − αk
j ∥2 + ∥w − wk∥2

∇2fj(wk)

 s.t. ∇fj(wk) + ∇2fj(wk)(w − wk) = αj

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

• With probability 1/(n+1), sample the -th eq. of (2), and project onto the set
of solutions of its linearization at :

j
wk

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

￼
αk+1

j , wk+1 = arg min
αj,w∈ℝd

∥αj − αk
j ∥2 + ∥w − wk∥2

∇2fj(wk)

 s.t. ∇fj(wk) + ∇2fj(wk)(w − wk) = αj

SAN: Stochastic Average Newton (2/2)
(n+1) equations: ￼(1) :

1
n ∑

n

i=1
αi = 0, (2) : αi = ∇fi(w), ∀i ∈ {1,…, n}

• 2) Sketched Newton Raphson [Yuan et al., 2022]

• With probability 1/(n+1), sample eq. (1) and project onto its set of solutions:

• With probability 1/(n+1), sample the -th eq. of (2), and project onto the set
of solutions of its linearization at :

j
wk

￼24

￼
αk+1

1 , …, αk+1
n = arg min

α1,…,αn∈ℝd
∑n

i=1 ∥αi − αk
i ∥2

 s.t. 1
n ∑n

i=1 αi = 0

￼
αk+1

j , wk+1 = arg min
αj,w∈ℝd

∥αj − αk
j ∥2 + ∥w − wk∥2

∇2fj(wk)

 s.t. ∇fj(wk) + ∇2fj(wk)(w − wk) = αj

What’s the point by doing this ?
(see paper for technique details and additional properties)

￼25

What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

￼25

What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

• is incremental, i.e. samples only one single data point per iteration;

￼25

What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

• is incremental, i.e. samples only one single data point per iteration;

• is efficient and scales well with the dimension , i.e. costs per iteration for
generalized linear models;

d O(d)

￼25

What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

• is incremental, i.e. samples only one single data point per iteration;

• is efficient and scales well with the dimension , i.e. costs per iteration for
generalized linear models;

d O(d)

• requires less parameter tuning (e.g. learning rate, sketch size).

￼25

What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

• is incremental, i.e. samples only one single data point per iteration;

• is efficient and scales well with the dimension , i.e. costs per iteration for
generalized linear models;

d O(d)

• requires less parameter tuning (e.g. learning rate, sketch size).

• We provide a global linear convergence theory of SAN

￼25

What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

• is incremental, i.e. samples only one single data point per iteration;

• is efficient and scales well with the dimension , i.e. costs per iteration for
generalized linear models;

d O(d)

• requires less parameter tuning (e.g. learning rate, sketch size).

• We provide a global linear convergence theory of SAN

• Using our approach, we develop other new stochastic Newton methods, e.g., SANA and
SNRVM

￼25

Logistic regression for binary classification
(see paper for additional experiments)

￼26

(a) rcv1 (￼ , ￼)d : 47236 n : 20242 (b) real-sim (￼ , ￼)d : 20958 n : 72309

Figure: Experiments for SAN applied for generalized linear model.

0 10 20 30 40 50
EÆective Passes

10°7

10°5

10°3

10°1

kr
f
k 2

rcv1

SAG

SAN

SVRG

0 10 20 30 40 50
EÆective Passes

10°7

10°6

10°5

10°4

10°3

10°2

10°1

kr
f
k 2

real-sim

SAG

SAN

SVRG

— Part II —
Finite Time Analysis of Policy Gradient

Methods in Reinforcement Learning

Introduction (Part II)

￼29

Impressive Reinforcement Learning (RL) Results

￼29

Impressive Reinforcement Learning (RL) Results

Board Game

￼29

Impressive Reinforcement Learning (RL) Results

Board Game Robotic Manipulation

￼29

Impressive Reinforcement Learning (RL) Results

Board Game Robotic Manipulation Game Playing

￼30

Reinforcement Learning
Sequential decision making problems

￼30

Reinforcement Learning
Sequential decision making problems

Markov decision Process (MDP)

￼30

Reinforcement Learning
Sequential decision making problems

Markov decision Process (MDP)

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

Markov decision Process (MDP)

‣ State st ∈ 𝒮

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
Markov decision Process (MDP)

‣ State st ∈ 𝒮

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

‣ Get a cost ￼c(st, at)

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

‣ Get a cost ￼c(st, at)

At time ￼t

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
π

Vρ(π) := 𝔼s0∼ρ, at∼πst, st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
π

Vρ(π) := 𝔼s0∼ρ, at∼πst, st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)] Cost function

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
π

Vρ(π) := 𝔼s0∼ρ, at∼πst, st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)] Cost function

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P
• Initial state distribution ρ

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
π

Vρ(π) := 𝔼s0∼ρ, at∼πst, st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)] Cost function

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P
• Initial state distribution ρ

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
π

Vρ(π) := 𝔼s0∼ρ, at∼πst, st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)] Cost function

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P
• Initial state distribution ρ
• Discounted factor γ ∈ (0,1)

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
π

Vρ(π) := 𝔼s0∼ρ, at∼πst, st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)] Cost function

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P
• Initial state distribution ρ
• Discounted factor γ ∈ (0,1)

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
θ∈ℝd

Vρ(θ) := 𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

￼30

Reinforcement Learning
Sequential decision making problems

• State space 𝒮
• Action space 𝒜
• Transition probabilities P
• Initial state distribution ρ
• Discounted factor γ ∈ (0,1)

Markov decision Process (MDP)

‣ State st ∈ 𝒮
‣ Take action at ∈ 𝒜
‣ at ∼ πst

∈ Δ(𝒜)

‣ Next state ￼st+1 ∼ P(⋅ ∣ st, at)

Solve an MDP to minimize total expected cost (a.k.a. policy optimization)

‣ Get a cost ￼c(st, at)

At time ￼t

Policy ￼ ,
￼ is the density of the distribution over actions at ￼

π : 𝒮 → Δ(𝒜)
πst,at

∈ ℝ st ∈ 𝒮

￼arg min
θ∈ℝd

Vρ(θ) := 𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

Objective: ￼arg minθ∈ℝd Vρ(θ)

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Simplicity

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Simplicity

• Easy to implement and use in practice

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Simplicity

• Easy to implement and use in practice

• Can solve a wide range of problems (e.g. partially-observable environments)

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Simplicity

• Easy to implement and use in practice

• Can solve a wide range of problems (e.g. partially-observable environments)

• Versatility

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Simplicity

• Easy to implement and use in practice

• Can solve a wide range of problems (e.g. partially-observable environments)

• Versatility

• Actor-critic [Konda and Tsitsiklis, 2000], natural PG[Kakade, 2001], policy mirror descent, etc.

￼31

Policy gradient (PG) methods
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Simplicity

• Easy to implement and use in practice

• Can solve a wide range of problems (e.g. partially-observable environments)

• Versatility

• Actor-critic [Konda and Tsitsiklis, 2000], natural PG[Kakade, 2001], policy mirror descent, etc.

• Trust-region (e.g. TRPO, PPO [Schulman et al., 2015; 2017]), variance reduction
techniques [Papini et al., 2018; Shen et al., 2019; Xu et al., 2020; Huang et al., 2020]

￼31

Main challenge about PG methods

￼32

Main challenge about PG methods

￼32

A solid theoretical understanding of even the “vanilla”
PG has long been elusive until recent, and it is messy.

Main challenge about PG methods

￼32

A solid theoretical understanding of even the “vanilla”
PG has long been elusive until recent, and it is messy.

Unlike value-based methods, sample efficiency in
theory lacks for existing gradient-based RL methods.

Vanilla Policy Gradient

Rui Yuan, Robert M. Gower, Alessandro Lazaric
A general sample complexity analysis of vanilla policy gradient, AISTATS, 2022.

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

￼34

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

￼34

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Policy gradient methods as gradient descent
Objective: ￼arg minθ∈ℝd Vρ(θ)

• PG methods

• Compute :∇θVρ(θ)

￼34

￼θ(k+1) = θ(k) − ηk ∇θVρ(θ(k))

Step size

Gradient of ￼Vρ(θ)

￼

∇θVρ(θ) = ∇θ𝔼s0∼ρ, at∼πst(θ), st+1∼P(⋅∣st,at) [∑
∞

t=0
γtc(st, at)]

= ∫ (∑
∞

t=0
γtc(st, at))∇θ p(τ ∣ θ)dτ

= ∫ (∑
∞

t=0
γtc(st, at))(∇θ p(τ ∣ θ)/p(τ ∣ θ))p(τ ∣ θ)dτ

= 𝔼p(τ∣θ) [(∑
∞

t=0
γtc(st, at))∇θlog p(τ ∣ θ)]

= 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

Trajectory ￼τ = (s0, a1, s1, a1, ⋯)

Probability of sampling a trajectory ￼ :

￼

τ
p(τ ∣ θ) = ρ(s0)Π∞

t′￼=0πst′￼,at′￼
(θ)P(st′￼+1 |st′￼

, at′￼
)

Vanilla policy gradient

￼35

Vanilla policy gradient

• Recall ∇θVρ(θ) = 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]

￼35

Vanilla policy gradient

• Recall ∇θVρ(θ) = 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]
• Compute an empirical estimator of the gradient by sampling m truncated

trajectories τ = (s0, a0, s1, a1, ⋯, sH−1, aH−1)

￼35

Vanilla policy gradient

• Recall ∇θVρ(θ) = 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]
• Compute an empirical estimator of the gradient by sampling m truncated

trajectories τ = (s0, a0, s1, a1, ⋯, sH−1, aH−1)

￼35

∇̂mVρ(θ) :=
1
m ∑

m

i=1 ∑
H−1

t=0
γtc(si

t , ai
t) ⋅ ∑

H−1

t′￼=0
∇θlog πsi

t′￼
,ai

t′￼
(θ)

Vanilla policy gradient

• Recall ∇θVρ(θ) = 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]
• Compute an empirical estimator of the gradient by sampling m truncated

trajectories τ = (s0, a0, s1, a1, ⋯, sH−1, aH−1)

• Vanilla PG (REINFORCE [Williams, 1992], GPOMDP [Baxter and Bartlett, 2001])

￼35

∇̂mVρ(θ) :=
1
m ∑

m

i=1 ∑
H−1

t=0
γtc(si

t , ai
t) ⋅ ∑

H−1

t′￼=0
∇θlog πsi

t′￼
,ai

t′￼
(θ)

θ(k+1) = θ(k) − η ∇̂mVρ(θ(k))

Current literatures of vanilla PG: fragmentary !

￼36

Current literatures of vanilla PG: fragmentary !
• Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] vs stochastic PG [Papini et al., 2019,

Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

￼36

Current literatures of vanilla PG: fragmentary !
• Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] vs stochastic PG [Papini et al., 2019,

Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

• Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [Zhang et al., 2020b, Liu et al., 2020]

￼36

Current literatures of vanilla PG: fragmentary !
• Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] vs stochastic PG [Papini et al., 2019,

Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

• Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [Zhang et al., 2020b, Liu et al., 2020]

• Different RL settings: softmax tabular policy w/o different regularizations [Agarwal et al., 2019,
Zhang et al., 2020a,b, Mei et al., 2020], Fisher-non-degenerate policy [Liu et al., 2020, Ding et al., 2021]

￼36

Current literatures of vanilla PG: fragmentary !
• Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] vs stochastic PG [Papini et al., 2019,

Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

• Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [Zhang et al., 2020b, Liu et al., 2020]

• Different RL settings: softmax tabular policy w/o different regularizations [Agarwal et al., 2019,
Zhang et al., 2020a,b, Mei et al., 2020], Fisher-non-degenerate policy [Liu et al., 2020, Ding et al., 2021]

• Different assumptions: Lipschitz and smooth policy [Liu et al., 2020, Zhang et al., 2020c, Xiong et al.,
2021], bijection between the primal and the dual space [Zhang et al., 2020a]

￼36

Current literatures of vanilla PG: fragmentary !
• Exact PG [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020] vs stochastic PG [Papini et al., 2019,

Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

• Different criteria of the convergence results: first-order stationary point [Papini et al., 2019,
Zhang et al., 2020c], global optimum [Agarwal et al., 2019, Zhang et al., 2020a, Mei et al., 2020], average
regret to the global optimum [Zhang et al., 2020b, Liu et al., 2020]

• Different RL settings: softmax tabular policy w/o different regularizations [Agarwal et al., 2019,
Zhang et al., 2020a,b, Mei et al., 2020], Fisher-non-degenerate policy [Liu et al., 2020, Ding et al., 2021]

• Different assumptions: Lipschitz and smooth policy [Liu et al., 2020, Zhang et al., 2020c, Xiong et al.,
2021], bijection between the primal and the dual space [Zhang et al., 2020a]

• Large mini-batch (e.g. ,) per iteration for stochastic updates [Papini et al.,
2019, Liu et al., 2020, Zhang et al., 2020c, Xiong et al., 2021]

O(ϵ−1) O(ϵ−2)

￼36

Contribution

￼37

Contribution

• A general PG analysis with weaker assumptions

￼37

Contribution

• A general PG analysis with weaker assumptions

• Unify much of the fragmented results in the literature under one guise without lost
of the performance.

￼37

Contribution

• A general PG analysis with weaker assumptions

• Unify much of the fragmented results in the literature under one guise without lost
of the performance.

• Recover existing sample complexity guarantees with weaker
assumptions for wider ranges of parameters (e.g. mini-batch m from 1 to)

O(ϵ−4)
O(ϵ−2)

￼37

Contribution

• A general PG analysis with weaker assumptions

• Unify much of the fragmented results in the literature under one guise without lost
of the performance.

• Recover existing sample complexity guarantees with weaker
assumptions for wider ranges of parameters (e.g. mini-batch m from 1 to)

O(ϵ−4)
O(ϵ−2)

• New sample complexity for global optimum guarantees with additional
relaxed weak gradient domination assumption, including Fisher-non-degenerate
parametrized policies as special case

O(ϵ−3)

￼37

Contribution

• A general PG analysis with weaker assumptions

• Unify much of the fragmented results in the literature under one guise without lost
of the performance.

• Recover existing sample complexity guarantees with weaker
assumptions for wider ranges of parameters (e.g. mini-batch m from 1 to)

O(ϵ−4)
O(ϵ−2)

• New sample complexity for global optimum guarantees with additional
relaxed weak gradient domination assumption, including Fisher-non-degenerate
parametrized policies as special case

O(ϵ−3)

￼37

Main assumption: ABC Assumption

￼38

 ￼[Khaled and Richtárik, 2020]

Main assumption: ABC Assumption

• We assume that, for some and all , the stochastic
gradient satisfies

A, B, C ≥ 0 θ ∈ ℝd

￼38

 ￼[Khaled and Richtárik, 2020]

Main assumption: ABC Assumption

• We assume that, for some and all , the stochastic
gradient satisfies

A, B, C ≥ 0 θ ∈ ℝd

￼38

 ￼[Khaled and Richtárik, 2020]

𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH
ρ (θ)∥2 +C

Main assumption: ABC Assumption

• We assume that, for some and all , the stochastic
gradient satisfies

A, B, C ≥ 0 θ ∈ ℝd

• Here is the optimum cost function.V*

￼38

 ￼[Khaled and Richtárik, 2020]

𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH
ρ (θ)∥2 +C

Main assumption: ABC Assumption

• We assume that, for some and all , the stochastic
gradient satisfies

A, B, C ≥ 0 θ ∈ ℝd

• Here is the optimum cost function.V*

• is the expected truncated total cost function.VH
ρ (θ) = 𝔼[∑

H−1

t=0
γtc(st, at)]

￼38

 ￼[Khaled and Richtárik, 2020]

𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH
ρ (θ)∥2 +C

Main assumption: ABC Assumption

• We assume that, for some and all , the stochastic
gradient satisfies

A, B, C ≥ 0 θ ∈ ℝd

• Here is the optimum cost function.V*

• is the expected truncated total cost function.VH
ρ (θ) = 𝔼[∑

H−1

t=0
γtc(st, at)]

￼38

 ￼[Khaled and Richtárik, 2020]

𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH
ρ (θ)∥2 +C

Suboptimality
gap

Main assumption: ABC Assumption

• We assume that, for some and all , the stochastic
gradient satisfies

A, B, C ≥ 0 θ ∈ ℝd

• Here is the optimum cost function.V*

• is the expected truncated total cost function.VH
ρ (θ) = 𝔼[∑

H−1

t=0
γtc(st, at)]

￼38

 ￼[Khaled and Richtárik, 2020]

𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH
ρ (θ)∥2 +C

Suboptimality
gap

Exact
gradient

Simple examples of ABC Assumption
ABC Assumption : ￼𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH

ρ (θ)∥2 +C

￼39

Simple examples of ABC Assumption
ABC Assumption : ￼𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH

ρ (θ)∥2 +C

• If , then ABC Assumption holds with the exact gradient. That is,H = m = ∞

￼39

Simple examples of ABC Assumption
ABC Assumption : ￼𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH

ρ (θ)∥2 +C

• If , then ABC Assumption holds with the exact gradient. That is,H = m = ∞

￼39

￼ , and ￼∇̂mVρ(θ) = ∇Vρ(θ) A = C = 0, B = 1;

Simple examples of ABC Assumption
ABC Assumption : ￼𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH

ρ (θ)∥2 +C

• If , then ABC Assumption holds with the exact gradient. That is,H = m = ∞

• If then ABC Assumption recovers the bounded variance of
the stochastic gradient assumption [Ghadimi and Lan, 2013].

A = 0 and B = 1,

￼39

￼ , and ￼∇̂mVρ(θ) = ∇Vρ(θ) A = C = 0, B = 1;

Simple examples of ABC Assumption
ABC Assumption : ￼𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH

ρ (θ)∥2 +C

• If , then ABC Assumption holds with the exact gradient. That is,H = m = ∞

• If then ABC Assumption recovers the bounded variance of
the stochastic gradient assumption [Ghadimi and Lan, 2013].

A = 0 and B = 1,

￼39

￼ , and ￼∇̂mVρ(θ) = ∇Vρ(θ) A = C = 0, B = 1;

￼
𝔼[∥∇VH

ρ (θ) − ∇̂mVρ(θ)∥2] ≤ C

⟹ 𝔼[∥∇̂mVρ(θ)∥2] ≤ ∥∇VH
ρ (θ)∥2 + C

Simple examples of ABC Assumption
ABC Assumption : ￼𝔼 [∥∇̂mVρ(θ)∥2] ≤ 2A(Vρ(θ) − V*)+B∥∇VH

ρ (θ)∥2 +C

• If , then ABC Assumption holds with the exact gradient. That is,H = m = ∞

• If then ABC Assumption recovers the bounded variance of
the stochastic gradient assumption [Ghadimi and Lan, 2013].

A = 0 and B = 1,

￼39

￼ , and ￼∇̂mVρ(θ) = ∇Vρ(θ) A = C = 0, B = 1;

￼
𝔼[∥∇VH

ρ (θ) − ∇̂mVρ(θ)∥2] ≤ C

⟹ 𝔼[∥∇̂mVρ(θ)∥2] ≤ ∥∇VH
ρ (θ)∥2 + C

Sample complexity under ABC Assumption

￼40

Sample complexity under ABC Assumption

• With a set of parameters , first-order stationary point convergence:(η, K, H)

￼40

Sample complexity under ABC Assumption

• With a set of parameters , first-order stationary point convergence:(η, K, H)

￼40

￼ min
0≤k≤K−1

𝔼[∥∇Vρ(θ(k))∥2] = O(ϵ2)

Sample complexity under ABC Assumption

• With a set of parameters , first-order stationary point convergence:(η, K, H)

￼40

￼ min
0≤k≤K−1

𝔼[∥∇Vρ(θ(k))∥2] = O(ϵ2)

Total number of iterations

Sample complexity under ABC Assumption

• With a set of parameters , first-order stationary point convergence:(η, K, H)

• Sample complexity (i.e., single step interaction with the environment among
single sampled trajectory per iteration):

(st, at)
KH = Õ(ϵ−4)

￼40

￼ min
0≤k≤K−1

𝔼[∥∇Vρ(θ(k))∥2] = O(ϵ2)

Total number of iterations

Sample complexity under ABC Assumption

• With a set of parameters , first-order stationary point convergence:(η, K, H)

• Sample complexity (i.e., single step interaction with the environment among
single sampled trajectory per iteration):

(st, at)
KH = Õ(ϵ−4)

• For the exact PG (): A = C = 0, B = 1 and H = ∞ K = O(ϵ−2)

￼40

￼ min
0≤k≤K−1

𝔼[∥∇Vρ(θ(k))∥2] = O(ϵ2)

Total number of iterations

Applications

￼41

Applications

• Different settings that satisfy ABC Assumption

￼41

Applications

• Different settings that satisfy ABC Assumption

• Softmax with log barrier regularization

￼41

Applications

• Different settings that satisfy ABC Assumption

• Softmax with log barrier regularization

• Softmax with entropy regularization

￼41

Applications

• Different settings that satisfy ABC Assumption

• Softmax with log barrier regularization

• Softmax with entropy regularization

• Expected Lipschitz and smooth policy (Gaussian and softmax policies)

￼41

Expected Lipschitz and smooth (E-LS) policy

￼42

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

￼42

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

￼𝔼[∥∇̂mVρ(θ)∥2] ≤ (1 −
1
m)∥∇VH

ρ (θ)∥2 +
ν
m

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

￼𝔼[∥∇̂mVρ(θ)∥2] ≤ (1 −
1
m)∥∇VH

ρ (θ)∥2 +
ν
m

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

• Sample complexity: KmH = Õ(ϵ−4)

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

￼𝔼[∥∇̂mVρ(θ)∥2] ≤ (1 −
1
m)∥∇VH

ρ (θ)∥2 +
ν
m

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

• Sample complexity: KmH = Õ(ϵ−4)

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

￼𝔼[∥∇̂mVρ(θ)∥2] ≤ (1 −
1
m)∥∇VH

ρ (θ)∥2 +
ν
m

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Wider range of parameters

￼m ∈ [1,
2ν
ϵ2]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

• Sample complexity: KmH = Õ(ϵ−4)

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

￼𝔼[∥∇̂mVρ(θ)∥2] ≤ (1 −
1
m)∥∇VH

ρ (θ)∥2 +
ν
m

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Wider range of parameters

￼m ∈ [1,
2ν
ϵ2]

Expected Lipschitz and smooth (E-LS) policy

• There exists constants G, F > 0 such that for each state , we haves ∈ 𝒮

• ABC Assumption holds with . That is,A = 0, B = 1 − 1/m and C = ν/m

• Sample complexity: KmH = Õ(ϵ−4)

￼42

￼
𝔼a∼πs(θ)[∥∇θlog πs,a(θ)∥2] ≤ G2,

𝔼a∼πs(θ)[∥∇2
θlog πs,a(θ)∥] ≤ F .

￼𝔼[∥∇̂mVρ(θ)∥2] ≤ (1 −
1
m)∥∇VH

ρ (θ)∥2 +
ν
m

 ￼ (Gaussian and softmax policies satisfy E-LS)[Papini et al., 2019]

Wider range of parameters

￼m ∈ [1,
2ν
ϵ2]

Not sample efficiency

Natural Policy Gradient

Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies, ICLR, 2023.

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

￼44

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Vanilla PG is not sample efficient

￼44

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Vanilla PG is not sample efficient

• Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

￼44

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Vanilla PG is not sample efficient

• Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

• NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

￼44

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Vanilla PG is not sample efficient

• Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

• NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

• Linear convergence of NPG is established for tabular case [Xiao, 2022]

￼44

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Vanilla PG is not sample efficient

• Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

• NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

• Linear convergence of NPG is established for tabular case [Xiao, 2022]

￼44

Context
Objective: ￼arg minθ∈ℝd Vρ(θ)

• Vanilla PG is not sample efficient

• Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

• NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

• Linear convergence of NPG is established for tabular case [Xiao, 2022]

￼44

Motivations

‣ Extend linear convergence of NPG from tabular to function approximation regime.

Natural policy gradient

￼45

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

￼45

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

Stationary distribution of the MDP

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

• Natural policy gradient

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

Stationary distribution of the MDP

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

• Natural policy gradient

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

￼θ(k+1) = θ(k) − ηkFρ(θ(k))† ∇θVρ(θ(k))

Stationary distribution of the MDP

Natural policy gradient

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

• Natural policy gradient

• : Fisher information matrixFρ(θ) = 𝔼(s,a)∼𝒟(θ)[∇θlog πs,a(θ)(∇θlog πs,a(θ))⊤]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

￼θ(k+1) = θ(k) − ηkFρ(θ(k))† ∇θVρ(θ(k))

Stationary distribution of the MDP

Natural policy gradient
With log-linear policies

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

• Natural policy gradient

• : Fisher information matrixFρ(θ) = 𝔼(s,a)∼𝒟(θ)[∇θlog πs,a(θ)(∇θlog πs,a(θ))⊤]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

￼θ(k+1) = θ(k) − ηkFρ(θ(k))† ∇θVρ(θ(k))

Stationary distribution of the MDP

Natural policy gradient
With log-linear policies

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

• Natural policy gradient

• : Fisher information matrixFρ(θ) = 𝔼(s,a)∼𝒟(θ)[∇θlog πs,a(θ)(∇θlog πs,a(θ))⊤]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

￼θ(k+1) = θ(k) − ηkFρ(θ(k))† ∇θVρ(θ(k))

Stationary distribution of the MDP

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Natural policy gradient
With log-linear policies

• State-action cost function (a.k.a Q-function) & advantage function

• Policy gradient theorem [Sutton et al., 2000]

• Natural policy gradient

• : Fisher information matrixFρ(θ) = 𝔼(s,a)∼𝒟(θ)[∇θlog πs,a(θ)(∇θlog πs,a(θ))⊤]

￼45

￼
Qs,a(θ):= 𝔼 at∼πst(θ), st+1∼P(⋅∣st,at) [∑

∞

t=0
γtc(st, at) ∣ s0 = s, a0 = a]

As,a(θ):= Qs,a(θ) − 𝔼a′￼∼πs(θ)[Qs,a′￼
(θ)]

￼∇θVρ(θ) =
1

1 − γ
𝔼(s,a)∼𝒟(θ)[As,a(θ)∇θlog πs,a(θ)]

￼θ(k+1) = θ(k) − ηkFρ(θ(k))† ∇θVρ(θ(k))

Stationary distribution of the MDP

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Feature map ￼ over ￼ϕs,a′￼
∈ ℝd 𝒮 × 𝒜

NPG with compatible function approximation

￼46

NPG with compatible function approximation

• Compatible function approximation

￼46

NPG with compatible function approximation

• Compatible function approximation

￼46

￼L(w, θ, ζ) = 𝔼(s,a)∼ζ[(w⊤ ∇θlog πs,a(θ) − As,a(θ))2]

NPG with compatible function approximation

• Compatible function approximation

• NPG can be rewritten as

￼46

￼L(w, θ, ζ) = 𝔼(s,a)∼ζ[(w⊤ ∇θlog πs,a(θ) − As,a(θ))2]

NPG with compatible function approximation

• Compatible function approximation

• NPG can be rewritten as

￼46

￼L(w, θ, ζ) = 𝔼(s,a)∼ζ[(w⊤ ∇θlog πs,a(θ) − As,a(θ))2]

￼θ(k+1) = θ(k) − ηkw(k)
⋆ , w(k)

⋆ ∈ arg min
w∈ℝd

L(w, θ(k), 𝒟(θ(k)))

NPG with compatible function approximation

• Compatible function approximation

• NPG can be rewritten as

￼46

￼L(w, θ, ζ) = 𝔼(s,a)∼ζ[(w⊤ ∇θlog πs,a(θ) − As,a(θ))2]

￼θ(k+1) = θ(k) − ηkw(k)
⋆ , w(k)

⋆ ∈ arg min
w∈ℝd

L(w, θ(k), 𝒟(θ(k)))

NPG with compatible function approximation

• Compatible function approximation

• NPG can be rewritten as

￼46

￼L(w, θ, ζ) = 𝔼(s,a)∼ζ[(w⊤ ∇θlog πs,a(θ) − As,a(θ))2]

￼θ(k+1) = θ(k) − ηkw(k)
⋆ , w(k)

⋆ ∈ arg min
w∈ℝd

L(w, θ(k), 𝒟(θ(k)))

Linear approximation of the advantage function

NPG with log-linear as policy mirror descent

￼47

NPG with log-linear as policy mirror descent

￼47

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

￼47

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

￼ϕ̄s,a(θ(k)) := ∇θlog πs,a(θ(k)) = ϕs,a − 𝔼a′￼∼πs(θ(k))[ϕs,a′￼
]

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

• is the Kullback-Leibler (KL) divergence for KL(p, q) = ∑a∈𝒜
pa log(pa/qa) p, q ∈ Δ(𝒜)

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

￼ϕ̄s,a(θ(k)) := ∇θlog πs,a(θ(k)) = ϕs,a − 𝔼a′￼∼πs(θ(k))[ϕs,a′￼
]

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

• is the Kullback-Leibler (KL) divergence for KL(p, q) = ∑a∈𝒜
pa log(pa/qa) p, q ∈ Δ(𝒜)

• Connection with Policy Iteration

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

￼ϕ̄s,a(θ(k)) := ∇θlog πs,a(θ(k)) = ϕs,a − 𝔼a′￼∼πs(θ(k))[ϕs,a′￼
]

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

• is the Kullback-Leibler (KL) divergence for KL(p, q) = ∑a∈𝒜
pa log(pa/qa) p, q ∈ Δ(𝒜)

• Connection with Policy Iteration

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

￼ϕ̄s,a(θ(k)) := ∇θlog πs,a(θ(k)) = ϕs,a − 𝔼a′￼∼πs(θ(k))[ϕs,a′￼
]

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨As(θ(k)), p⟩} with As(θ(k)) := [As,a(θ(k))]a ∈ ℝ|𝒜|

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

• is the Kullback-Leibler (KL) divergence for KL(p, q) = ∑a∈𝒜
pa log(pa/qa) p, q ∈ Δ(𝒜)

• Connection with Policy Iteration

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

￼ϕ̄s,a(θ(k)) := ∇θlog πs,a(θ(k)) = ϕs,a − 𝔼a′￼∼πs(θ(k))[ϕs,a′￼
]

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨As(θ(k)), p⟩} with As(θ(k)) := [As,a(θ(k))]a ∈ ℝ|𝒜|

Regularization

NPG with log-linear as policy mirror descent

• NPG with log-linear can also be written as

• is a matrix whose rows consist of the centered feature mapsΦ̄(k)
s ∈ ℝ|𝒜|×d

• is the Kullback-Leibler (KL) divergence for KL(p, q) = ∑a∈𝒜
pa log(pa/qa) p, q ∈ Δ(𝒜)

• Connection with Policy Iteration

￼47

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

πs,a(θ) =
exp ϕ⊤

s,aθ
∑a′￼∈𝒜 exp ϕ⊤

s,a′￼
θ

Log-linear policy:

Policy mirror descent

￼ϕ̄s,a(θ(k)) := ∇θlog πs,a(θ(k)) = ϕs,a − 𝔼a′￼∼πs(θ(k))[ϕs,a′￼
]

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨As(θ(k)), p⟩} with As(θ(k)) := [As,a(θ(k))]a ∈ ℝ|𝒜|

Regularization

Linear approximation

Convergence theory

￼48

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

￼48

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

￼48

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

• Linear convergence to the global optimum by increasing step size by 1/γ

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

• Linear convergence to the global optimum by increasing step size by 1/γ

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))}

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

• Linear convergence to the global optimum by increasing step size by 1/γ

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))} ￼ηk ⟶ ∞

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

• Linear convergence to the global optimum by increasing step size by 1/γ

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))} ￼ηk ⟶ ∞

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

• Linear convergence to the global optimum by increasing step size by 1/γ

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))} ￼ηk ⟶ ∞

Convergence theory

• Three-point descent lemma [Chen and Teboulle, 1993]:

• For any ,p ∈ Δ(𝒜)

• One can let or be the optimal policy to derive a telescoping sump = πs(θ(k))

• Linear convergence to the global optimum by increasing step size by 1/γ

￼48

￼
ηk⟨Φ̄(k)

s w(k)
⋆ , πs(θ(k+1))⟩ + KL(πs(θ(k+1)), πs(θ(k)))

≤ ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k))) − KL(p, πs(θ(k+1)))

￼πs(θ(k+1)) = arg min
p∈Δ(𝒜)

{ηk⟨Φ̄(k)
s w(k)

⋆ , p⟩ + KL(p, πs(θ(k)))} ￼ηk ⟶ ∞

Behave more and more like policy iteration

Convergence theory 2

￼49

Convergence theory 2

• Consequently, we obtain an sample complexity for NPGÕ(ϵ−2)

￼49

Convergence theory 2

• Consequently, we obtain an sample complexity for NPGÕ(ϵ−2)

• Similar linear convergence and sample complexity results are also
established for Q-NPG

Õ(ϵ−2)

￼49

Convergence theory 2

• Consequently, we obtain an sample complexity for NPGÕ(ϵ−2)

• Similar linear convergence and sample complexity results are also
established for Q-NPG

Õ(ϵ−2)

• Sublinear convergence for both NPG and Q-NPG with arbitrary large constant
step size

￼49

Discussion  
& Connections to each other

￼51

• SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

￼51

• SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

• The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

￼51

• SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

• The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

• The linear convergence analysis of NPG with log-linear policy is extended to
general parametrization [Alfano et al., 2023]

￼51

• SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

• The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

• The linear convergence analysis of NPG with log-linear policy is extended to
general parametrization [Alfano et al., 2023]

• Stochastic second order methods for optimizing the expected cost in RL (e.g.
sketched NPG ?)

￼51

Conclusion

￼52

A principled approach to

design stochastic Newton methods (Part I)

A better understanding and sample efficiency

in gradient-based RL (Part II)

￼53

List  
of  
Papers

• A Novel Framework for Policy Mirror Descent with General Parametrization and Linear
Convergence, preprint, 2023. 
Carlo Alfano, Rui Yuan, Patrick Rebeschini

• Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies, ICLR
2023  
Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao

• A general sample complexity analysis of vanilla policy gradient, AISTATS 2022  
Rui Yuan, Robert M. Gower, Alessandro Lazaric

• SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums, AISTATS 2022  
Jiabin Chen*, Rui Yuan*, Guillaume Garrigos, Robert M. Gower

• Sketched Newton-Raphson, SIAM 2022  
Rui Yuan, Alessandro Lazaric, Robert M. Gower

￼54

Thank you !

References

Robert M. Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and
Applications, 36(4):1660–1690, 2015.
A. Rodomanov and D. Kropotov. A superlinearly-convergent proximal newton-type method for the optimization of finite sums,
in Proceedings of The 33rd International Conference on Machine Learning, vol. 48 of Proceedings of Machine Learning
Research, PMLR, 20–22 Jun 2016, pp. 2597–2605.
Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtarik. Stochastic newton and cubic newton methods with simple local
linear-quadratic rates. 2019.
Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information Processing Systems, volume 12.
MIT Press, 2000.
Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems, volume 14. MIT Press,
2001.
John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.
Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic variance-reduced
policy gradient. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 4026–4035.
PMLR, 2018.
Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy gradient. In Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
5729– 5738. PMLR, 09–15 Jun 2019

￼55

References

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive variance reduction. In
International Conference on Learning Representations, 2020.
Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Momentum-based policy gradient methods, 2020.
R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning,
8:229–256, 1992.
J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence Research, 15:319–350,
Nov 2001.
Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. 2019.
Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence rates of softmax policy
gradient methods. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 6820–6829. PMLR, 13–18 Jul 2020.
Matteo Papini, Matteo Pirotta, and Marcello Restelli. Smoothing policies and safe policy gradients, 2019.
Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced) policy gradient and
natural policy gradient methods. In Advances in Neural Information Processing Systems, volume 33, pages 7624–7636, 2020
Huaqing Xiong, Tengyu Xu, Yingbin Liang, and Wei Zhang. Non-asymptotic convergence of adam-type reinforcement
learning algorithms under markovian sampling. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10460–
10468, May 2021.
Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational policy gradient method for
reinforcement learning with general utilities. In Advances in Neural Information Processing Systems, volume 33, pages
4572–4583. Curran Associates, Inc., 2020a.

￼56

References

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement learning with
reinforce, 2020b.
Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence of policy gradient methods to (almost)
locally optimal policies. SIAM Journal on Control and Optimization, 58(6):3586–3612, 2020c.
Yuhao Ding, Junzi Zhang, and Javad Lavaei. On the global convergence of momentum-based policy gradient, 2021.
Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world, 2020.
Saeed Ghadimi and Guanghui Lan. Stochastic firstand zeroth-order methods for nonconvex stochastic programming.
SIAM journal on optimization, 23 (4):2341–2368, 2013.
Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning Research, 23(282):1–36,
2022.
Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems 12, pages 1057–1063. MIT
Press, 2000.
Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm using bregman functions.
SIAM Journal on Optimization, 3(3):538–543, 1993.
Gower, Robert M., Aaron Defazio, and Mike Rabbat. Stochastic Polyak Stepsize with a Moving Target. In Advances in
neural information processing systems, 13th Annual Workshop on Optimization for Machine Learning (OPT2021), 2021
Fatkhullin, Ilyas, Jalal Etesami, Niao He, and Negar Kiyavash (2022). Sharp Analysis of Stochastic Optimization under
Global Kurdyka-Łojasiewicz Inequality. In Advances in Neural Information Processing Systems

￼57

￼58

Back-up Slides

Stochastic Newton method (SNM)
[Kovalev et al., 2019]

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of ￼ : ￼f ∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

￼59

Stochastic Newton method (SNM)
[Kovalev et al., 2019]

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of ￼ : ￼f ∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

￼59

min
x∈ℝd [f(x) :=

1
n ∑

n

i=1
fi(x)]

Stochastic Newton method (SNM)
[Kovalev et al., 2019]

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of ￼ : ￼f ∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

￼59

min
x∈ℝd [f(x) :=

1
n ∑

n

i=1
fi(x)]

￼ The loss over the ￼th batch of datafi(x) := i

Stochastic Newton method (SNM)
[Kovalev et al., 2019]

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of ￼ : ￼f ∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

￼59

min
x∈ℝd [f(x) :=

1
n ∑

n

i=1
fi(x)]

￼ The loss over the ￼th batch of datafi(x) := i

n := Number of samples

Stochastic Newton method (SNM)
[Kovalev et al., 2019]

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of ￼ : ￼f ∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

￼59

min
x∈ℝd [f(x) :=

1
n ∑

n

i=1
fi(x)]

￼ The loss over the ￼th batch of datafi(x) := i

n := Number of samples

Training problem

Objective: ￼∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

￼60

Objective: ￼∇f(x) =
1
n ∑

n

i=1
∇fi(x) = 0

• Rewrite the problem as

• ￼ where ￼ , i.e. ￼

• Sketching matrix : based on subsampling ￼ blocks and the Hessian
matrices of the ￼ functions

F(x; wi) = 0 F : ℝ(n+1)d → ℝ(n+1)d p = m = (n + 1)d

(n + 1)
fi

￼60

￼
1
n

n

∑
i=1

∇fi(wi) = 0, and x = wi, for i = 1,…, n

SNM is a special case of SNR!
Objective: ￼∇f(x) =

1
n ∑

n

i=1
∇fi(x) = 0

• Rewrite the problem as

• ￼ where ￼ , i.e. ￼

• Sketching matrix : based on subsampling ￼ blocks and the Hessian
matrices of the ￼ functions

F(x; wi) = 0 F : ℝ(n+1)d → ℝ(n+1)d p = m = (n + 1)d

(n + 1)
fi

￼60

￼
1
n

n

∑
i=1

∇fi(wi) = 0, and x = wi, for i = 1,…, n

SNM is a special case of SNR!
Objective: ￼∇f(x) =

1
n ∑

n

i=1
∇fi(x) = 0

• Rewrite the problem as

• ￼ where ￼ , i.e. ￼

• Sketching matrix : based on subsampling ￼ blocks and the Hessian
matrices of the ￼ functions

F(x; wi) = 0 F : ℝ(n+1)d → ℝ(n+1)d p = m = (n + 1)d

(n + 1)
fi

￼60

￼
1
n

n

∑
i=1

∇fi(wi) = 0, and x = wi, for i = 1,…, n

Consequently, establish the first global convergence theory of SNM

￼61

Overview of convergence results for vanilla PG
Figure from [Yuan et al., 2022]

￼62

A hierarchy between the assumptions
Figure from [Yuan et al., 2022]

￼63

Overview of convergence results for NPG
Figure from [Yuan et al., 2023]

