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Sketched Newton-Raphson

Rui Yuan, Alessandro Lazaric, Robert M. Gower
Sketched Newton-Raphson, Society for Industrial and Applied Mathematics (SIAM) Journal on Optimization (SIOPT), 2022.
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• Newton-Raphson (NR) method

• : transpose of the Jacobian matrix of  at DF(x) = [∇F1(x)⋯∇Fm(x)] ∈ ℝp×m F x

• : Moore-Penrose pseudoinverse of (DF(xk)⊤)† DF(xk)⊤
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xk+1 = xk − η (DF(xk)⊤)† F(xk)

Cost per iteration is ￼  which is prohibitive when both ￼  and ￼  are largeO (min{pm2, mp2}) p m



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

￼11



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) . Newton System



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) . Newton System



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Newton System



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

Newton System

Sketched 
Newton System



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

￼ : sketching matrix of size ￼  with ￼ , low rankSk ∼ 𝒟 m × τ τ ≪ m

Newton System

Sketched 
Newton System



￼Sketch − and − project
    ￼[Gower and Richtárik, 2015]

• Newton-Raphson (NR) method

• Sketched Newton-Raphson (SNR) method

￼11

xk+1 = xk − η (DF(xk)⊤)† F(xk)

= arg min
x∈ℝp

∥x − xk∥2
2

subject to DF(xk)⊤(x − xk) = − ηF(xk) .

xk+1 = arg min
x∈ℝp

∥x − xk∥2
2

subject to S⊤
k DF(xk)⊤(x − xk) = − ηS⊤

k F(xk) .

￼ : sketching matrix of size ￼  with ￼ , low rankSk ∼ 𝒟 m × τ τ ≪ m Cost per iteration ￼O(p)

Newton System

Sketched 
Newton System



Decrease dimension using sketching

￼12



Decrease dimension using sketching
The sketching matrix ￼  a distribution over ￼  and ￼S ∼ 𝒟 S ∈ ℝm×τ τ ≪ m

￼12

￼τ

￼m

￼S⊤



Decrease dimension using sketching
The sketching matrix ￼  a distribution over ￼  and ￼S ∼ 𝒟 S ∈ ℝm×τ τ ≪ m

￼12

￼τ

￼m ￼m

￼p

￼S⊤ ￼DF(xk)⊤



Decrease dimension using sketching
The sketching matrix ￼  a distribution over ￼  and ￼S ∼ 𝒟 S ∈ ℝm×τ τ ≪ m

￼12

￼τ￼τ

￼m ￼m

￼p

￼p

=

￼S⊤ ￼DF(xk)⊤ = ￼S⊤DF(xk)⊤



Simple examples of sketches

￼13



Simple examples of sketches

• Sample                    S =

0
0
1
0

= ej ⟹ S⊤DF(x)⊤ = ∇Fj(x)⊤

￼13



Simple examples of sketches

• Sample                    S =

0
0
1
0

= ej ⟹ S⊤DF(x)⊤ = ∇Fj(x)⊤

•
Average sample      S =

a1

0
a3
a4

= ∑
i∈I

aiei ⟹ S⊤DF(x)⊤ = ∑
i∈I

ai ∇Fi(x)⊤

￼13



Simple examples of sketches

• Sample                    S =

0
0
1
0

= ej ⟹ S⊤DF(x)⊤ = ∇Fj(x)⊤

•
Average sample      S =

a1

0
a3
a4

= ∑
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•
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2

subject to S⊤
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Convergence theories of SNR
(see paper for technique details and additional properties)

• Reformulation as online stochastic gradient descent (SGD)

• The reformulation has a gratuitous smoothness property

• The reformulation has a gratuitous interpolation condition, i.e. zero noise for 
stochastic gradient at the optimum

• Global convergence theory and rates of convergence guaranteed under 
convex type assumptions
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• When , i.e. no sketch, new global convergence theory for the original 
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• When , i.e., single row sampling, new nonlinear Kaczmarz methodSk = ei

• Recover the stochastic Newton method [Rodomanov and Kropotov, 2016; Kovalev et al., 
2019] (First global convergence theory)

• New method for solving generalized linear models (GLM)
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• We want to solve ∇f(w) = 0
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Motivations

‣ Develop a second order method for machine learning problems that is incremental, 

efficient, scales well with the dimension d, and that requires less parameter tuning.  

Design new stochastic second order methods



SAN: Stochastic Average Newton

Jiabin Chen*, Rui Yuan*, Guillaume Garrigos, Robert M. Gower
SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums, AISTATS, 2022.
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min
w∈ℝd [f(w) :=

1
n ∑

n

i=1
fi(w)]

￼ The loss over the ￼th batch of datafi(w) := i

n := Number of samples

• Solving a finite-sum minimization problem

• Finding a stationary point of the gradient of   : f ∇f(w) =
1
n ∑

n

i=1
∇fi(w) = 0
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What’s the point by doing this ?
(see paper for technique details and additional properties)

• It turns out that SAN

• is incremental, i.e. samples only one single data point per iteration;

• is efficient and scales well with the dimension , i.e. costs  per iteration for 
generalized linear models;

d O(d)

• requires less parameter tuning (e.g. learning rate, sketch size).

• We provide a global linear convergence theory of SAN

• Using our approach, we develop other new stochastic Newton methods, e.g., SANA and 
SNRVM

￼25



Logistic regression for binary classification
(see paper for additional experiments)
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(a) rcv1 (￼ , ￼ )d : 47236 n : 20242 (b) real-sim (￼ , ￼ )d : 20958 n : 72309

Figure: Experiments for SAN applied for generalized linear model.
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— Part II — 
Finite Time Analysis of Policy Gradient

Methods in Reinforcement Learning



Introduction (Part II)
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Impressive Reinforcement Learning (RL) Results
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• Simplicity

• Easy to implement and use in practice

• Can solve a wide range of problems (e.g. partially-observable environments)

• Versatility

• Actor-critic [Konda and Tsitsiklis, 2000], natural PG[Kakade, 2001], policy mirror descent, etc.

• Trust-region (e.g. TRPO, PPO [Schulman et al., 2015; 2017]), variance reduction 
techniques [Papini et al., 2018; Shen et al., 2019; Xu et al., 2020; Huang et al., 2020]
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A solid theoretical understanding of even the “vanilla” 
PG has long been elusive until recent, and it is messy.

Unlike value-based methods, sample efficiency in 
theory lacks for existing gradient-based RL methods.



Vanilla Policy Gradient

Rui Yuan, Robert M. Gower, Alessandro Lazaric
A general sample complexity analysis of vanilla policy gradient, AISTATS, 2022.
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Vanilla policy gradient

• Recall ∇θVρ(θ) = 𝔼p(τ∣θ) [∑
∞

t=0
γtc(st, at)∑

∞

t′￼=0
∇θlog πst′￼,at′￼

(θ)]
• Compute an empirical estimator of the gradient by sampling m truncated 

trajectories τ = (s0, a0, s1, a1, ⋯, sH−1, aH−1)

• Vanilla PG (REINFORCE [Williams, 1992], GPOMDP [Baxter and Bartlett, 2001])
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∇̂mVρ(θ) :=
1
m ∑
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i=1 ∑
H−1

t=0
γtc(si

t , ai
t) ⋅ ∑
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θ(k+1) = θ(k) − η ∇̂mVρ(θ(k))
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• With a set of parameters , first-order stationary point convergence:(η, K, H)

• Sample complexity (i.e., single step interaction  with the environment among 
single sampled trajectory per iteration): 

(st, at)
KH = Õ(ϵ−4)

• For the exact PG ( ): A = C = 0, B = 1 and H = ∞ K = O(ϵ−2)

￼40
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• Expected Lipschitz and smooth policy (Gaussian and softmax policies)
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Natural Policy Gradient

Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies, ICLR, 2023.
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Motivations

‣ Extend linear convergence of NPG from tabular to function approximation regime.  
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Linear approximation of the advantage function
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Behave more and more like policy iteration
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• Consequently, we obtain an  sample complexity for NPGÕ(ϵ−2)

• Similar linear convergence and  sample complexity results are also 
established for Q-NPG

Õ(ϵ−2)

• Sublinear convergence for both NPG and Q-NPG with arbitrary large constant 
step size
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stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

• The use of the gradient domination type assumption in the vanilla PG analysis 
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

• The linear convergence analysis of NPG with log-linear policy is extended to 
general parametrization [Alfano et al., 2023]

• Stochastic second order methods for optimizing the expected cost in RL (e.g. 
sketched NPG ?)
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Conclusion

￼52

A principled approach to 

design stochastic Newton methods (Part I)

A better understanding and sample efficiency 

in gradient-based RL (Part II)
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Training problem
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• ￼  where ￼ , i.e. ￼

• Sketching matrix : based on subsampling ￼  blocks and the Hessian 
matrices of the ￼  functions
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Consequently, establish the first global convergence theory of SNM



￼61

Overview of convergence results for vanilla PG
Figure from [Yuan et al., 2022]
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A hierarchy between the assumptions
Figure from [Yuan et al., 2022]
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Overview of convergence results for NPG
Figure from [Yuan et al., 2023]


