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Gradient descent to solve min,, pa f(W)
a.k.a First-order methods Step size /

/ Learning rate
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C>0
. | 4
arg min f(w) & arg min C X f(w)
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Invariance of Newton method

a.k.a Second-order methods
Wk+1 — Wk . nvZf(Wk)—l Vf(wk) @ Wk+1 — Wk — 7

Scale invariant, i.e. easy to tune the step size -

—
—
—
—
—

A Cost per iteration is O (d3) which is prohibitive when d is large

Motivations

» Less parameters tuning, e.g. step size

V(Cfw*)) ™!

~ Computational efficiency, as cheap as (stochastic) first order methods

V(CAw")



Sketched Newton-Raphson

Rui Yuan, Alessandro Lazaric, Robert M. Gower
Sketched Newton-Raphson, Society for Industrial and Applied Mathematics (SIAM) Journal on Optimization (SIOPT), 2022.



Context



Context

. Solving non linear equations F(x) = 0 with F : [




Context

o Solving non linear equations F(x) = O with F': R — |

« Main interest: Solving machine learning problems (e.g. generalized linear models)



Context

o Solving non linear equations F(x) = O with F': R — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)



Context

. Solving non linear equations F(x) = O with F': RP — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

DF(x) = [VFl(x)--- VFm(x)] e RP*™: transpose of the Jacobian matrix of F at x



Context

. Solving non linear equations F(x) = O with F': RP — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

DF(x) = [VFl(x)--- VFm(x)] e RP*™: transpose of the Jacobian matrix of F at x

(DF (xk)T)T: Moore-Penrose pseudoinverse of DF(x*)'



Context

o Solving non linear equations F(x) = O with F': R — |
« Main interest: Solving machine learning problems (e.g. generalized linear models)

 Newton-Raphson (NR) method

X+ = xk — g (DF(xk)T)TF(xk)

/7
/7

DF(x) = [VFl(x)--- VFm(x)] e RP*™M: trarlsp/ose of the Jacobian matrix of F' at x

/7

/7

(DF (xk)T)T: Moore-Penrose pseudoinyerse of DF(x*)"

A Cost per iteration is O (min{pmz, mpz}) which is prohibitive when both p and m are large
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Q [Gower and Richtarik, 2015]

* Newton-Raphson (NR) method

Xk+1 — .Xk — 7 (DF(xk)T)TF(xk)

= arg min ||x — ka%
xeR?

subjectto DF(xM'(x — x5 = —yF(N .| ——  Newton System

» Sketched Newton-Raphson (SNR) method

x**! = arg min ||x — x*|3

xeRP
subjectto S DF(x*)'(x — x*) = — S F(xX") .| ——

Sketched
Newton System

S, ~ D: sketching matrix of size m X 7 with 7 << m1, low rank Cost per iteration O(p)
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Decrease dimension using sketching
The sketching matrix S ~ 9 a distribution over S € R and 7 < m
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Decrease dimension using sketching
The sketching matrix S ~ 9 a distribution over S € R and 7 < m
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Simple examples of sketches

=¢, =  S'DF(x)! = VF(x)'

Average sample S

— Z ae. — S'DF(x)" = Z aiVFl-(x)T

el el

a3
Ay

100 VE(x)T

Batch sample s= 090 =leqe] = sDFOT = |VE@T| er™

001 VF(x)'
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Sketched Newton-Raphson (SNR)

x*1 = arg min ||x — x¥||3
xeRP
subjectto S, DF(x*)T(x —xY = — S, F(x").
xk

DF(xMT(x — x* = — nS| F(x*)
k+1
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Convergence theories of SNR

(see paper for technique details and additional properties)

* Reformulation as online stochastic gradient descent (SGD)
* The reformulation has a gratuitous smoothness property

* The reformulation has a gratuitous interpolation condition, i.e. zero noise for
stochastic gradient at the optimum

* Global convergence theory and rates of convergence guaranteed under
convex type assumptions
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Generalized linear models (GLMS)

e (Generalized linear models

Training problem &——

I A
min [f(w) = — 21—1 Cbi(aiTW) +—[Iwll?

weR? n = 2

\

¢; := The loss over the ith batch of data

« We want to solve Vf(w) =0

— 1 & " —
Viw) = - Zi=l ¢pi(a w)a;, + iw =0
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Objective: vfw) = ! Z'f’ Pla wya; + iw = 0
n l

=1\ ,

* Fixed point equations

e FF(x) =0where F: |

w

n+d

— — ¢i,(ai-rw)’ fori=1,...,n,

1

= —Ao el

An

— |

n+d -

d

i.e.

and x = |a; w| € |

a, a] e R

A . a n
a :al an]TEIR”
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Tossing-coin-sketch (TCS) for solving GLMs

Objective: vfiw) = 1 >
n

n
l

=1 \ /

* Fixed point equations

W

. F(x) = 0 where F : R

* Toss a coin to decide which block to sketch Q?j

. Cost per iteration O(d) when the sketch size is O(1)

Pi(a'wya; + Iw =0

= —¢lia'w), fori=1,...,n,

1

= —Ao el

An

— |

ntd o

d
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Logistic regression for binary classification

(see paper for additional experiments)
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Design new stochastic second order methods

Motivations

>~ Develop a second order method for machine learning problems that is

, scales well with the dimension d, and that requires less



SAN: Stochastic Average Newton

Jiabin Chen*, Rui Yuan*, Guillaume Garrigos, Robert M. Gower
SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums, AISTATS, 2022.
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Finite-sum minimization problem

* Solving a finite-sum minimization problem

|
. Finding a stationary point of the gradientof f : Vf(w) = — Zn 1 Viw) =0
j A =
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SAN: Stochastic Average Newton (1/2)

|l «—n
. 1) Rewrite the optimality conditions Vf(w) = — ) Vfw) = 0as
n 1=

 [—
n =) =0,
(2) = Vf(w) € RY, Vie{l,..n}.

* (n+1) equations

. (n+1) variables [w; 4P ---;an]
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What'’s the point by doing this ?

(see paper for technique details and additional properties)

* |t turns out that SAN
@ is incremental, i.e. samples only one single data point per iteration;

@ is efficient and scales well with the dimension d, i.e. costs O(d) per iteration for
generalized linear models;

€ requires less parameter tuning (e.g. learning rate, sketch size).
©’? We provide a global linear convergence theory of SAN

G Using our approach, we develop other new stochastic Newton methods, e.g., SANA and
SNRVM



Logistic regression for binary classification

(see paper for additional experiments)

rcvl | real-sim
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Figure: Experiments for SAN applied for generalized linear model.
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Objective: arg mingycpa V,(6)

o Simplicity
e Easy to implement and use in practice
* Can solve a wide range of problems (e.g. partially-observable environments)
* Versatility
» Actor-critic [Konda and Tsitsiklis, 2000], hatural PG[Kakade, 2001], policy mirror descent, etc.

* Trust-region (e.g. TRPO, PPO [Schulman et al., 2015; 2017]), variance reduction
technigques [Papini et al., 2018; Shen et al., 2019; Xu et al., 2020; Huang et al., 2020]
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Main challenge about PG methods

A solid theoretical understanding of even the “vanilla”
PG has long been elusive until recent, and it is messy.

Unlike value-based methods, sample efficiency in
theory lacks for existing gradient-based RL methods.



Vanilla Policy Gradient

Rui Yuan, Robert M. Gower, Alessandro Lazaric
A general sample complexity analysis of vanilla policy gradient, AISTATS, 2022.
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. Recall v,V (0) =, _tho y'e(s, at)zf= Volog,,,(0)

 Compute an empirical estimator of the gradient by sampling m truncatead
trajectories 7 = (SO, Ao, S15A1s *** 5 SH_1> aH_l)

A 1 m o
Vi V0) = — Zi:l tho yie(st,al) - zt,zo Volog 7y, ,(0)
o Vanilla PG (REINFORCE [wiliams, 1992], GPOMDP [Baxter and Bartlett, 2001])

(k+1) — pgk) _ . X, (k)
grD = g® — v, v (6P)
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. With a set of parameters (7, K, H ), first-order stationary point convergence:

min_E[|VV,@®)]] = O(?)
0<k<K-1

T Total number of iterations

. Sample complexity (i.e., single step interaction (s,, a,) with the environment among
single sampled trajectory per iteration):
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A Not sample efficiency



Natural Policy Gradient

Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies, ICLR, 2023.
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Context

Objective: arg mingycpa V,(6)

* Vanilla PG is not sample efficient
* Natural PG (NPG)[Kakade, 2001] uses a preconditioner to improve PG direction

 NPG is the building block of several state-of-the-art algorithms (TRPO, PPO)

* Linear convergence of NPG is established for|tabular case|[xiao, 2022]

Motivations

> Extend linear convergence of NPG from tabular to function approximation regime.
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NPG with compatible function approximation

 Compatible function approximation

L(w,0,0) = E( o |(W Vylogz, (6) — A, (6))]
~————
Linear approximation of the advantage function

e NPG can be rewritten as

O+ — gk) _ nkwik), Wik) € arg min L(w, 0% P (OWY)
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* Three-point descent lemma [Chen and Teboulle, 1993]:

Forany p € A(H),
1 PEwH, 7 (0%+D)) + KL(7 (%), 7,(6™))

< n@OwW, py + KL(p, 7,(0%)) — KL(p, 7,(** D))
One can let p = 7,(0%) or be the optimal policy to derive a telescoping sum

o Linear convergence to the global optimum by increasing step size by 1/y

7 (0%D) = arg min DMy (k), + KL(p, 7. (6%
(6%7) = arg min [ p) +KL(p,z (0P}, .

Behave more and more like policy iteration
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Convergence theory 2

« Consequently, we obtain an 6(6_2) sample complexity for NPG

« Similar linear convergence and @(6‘2) sample complexity results are also
established for QO-NPG

* Sublinear convergence for both NPG and Q-NPG with arbitrary large constant
step size



Discussion

& Connections to each other
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SNR and SNRVM open the way to designing and analyzing a host of new
stochastic second order methods (e.g. stochastic Polyak method [Gower et al., 2021])

The use of the gradient domination type assumption in the vanilla PG analysis
influence the analysis of variance reduced PG methods [Fatkhullin et al., 2022]

The linear convergence analysis of NPG with log-linear policy is extended to
general parametrization [Alfano et al., 2023]

Stochastic second order methods for optimizing the expected cost in RL (e.g.
sketched NPG ?)



Conclusion

A principled approach to
design stochastic Newton methods (Part 1)
A better understanding and sample efficiency

iIn gradient-based RL (Part |l)
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Stochastic Newton method (SNM)

[Kovalev et al., 2019]

* Solving a finite-sum minimization problem

. , |
Training problem < min [f(X) = —Zizlfi(X)]

xeR4 n

| «—n
Finding a stationary point of the gradientof f : Vf(x) = — Z 1 Vi(x) =0
7 At =
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SNM is a special case of SNR!

Objective: Vfx) = ! 2’_’ V£(x) =0
n i=1

* Rewrite the problem as

1 n
— ) V() =0, and x =, fori=1...n
n

=1

. F(x;w) = 0where F : R"Dd  RIt+Dd 5 o

o Sketching matrix : based on subsampling blocks and the Hessian
matrices of the f; functions

Consequently, establish the first global convergence theory of SNM
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Overview of convergence results for vanilla PG

Table 1: Overview of different convergence results for vanilla PG methods. The darker cells contain our new
results. The light cells contain previously known results that we recover as special cases of our analysis, and
extend the permitted parameter settings. White cells contain existing results that we could not recover under

Figure from [Yuan et al., 2022]

our general analysis.

Guarantee”™ Setting™™ (our I;esfl‘lel;‘:?rfel’)ol d) Bound Remarks
ABC Thm. 3.4 O(e~?) | Weakest asm.
Sample '
complexity of . We;aker asm.;
stochastic PG BLLS Papini (2020) o (%) Wider range_ozf parameters; |
for FOSP Cor. 4.7 Recover O(e™“) for exact PG;
Improved smoothness constant
(. —1 Recover linear convergence for the
Sample ABC + PL Thm. H.2 O(e™ ) exact PG
complexity of ABC + (14) Thm. C.2 O(e™3) | Recover O(e~!) for the exact PG
stochastic PG BE-LS + FI + ~ 3
for GO compatible Cor. 4.14 O(e™°) | Improved by € compared to Cor. 4.7
Sample ABC + (14) Cor. C.1 O(e*) | Weakest asm.
P E-LS + FI + Liu et al. (2020) ~, —ay | Weaker asm.;
complexity of compatible Cor. F.2 O(e™) Wider range of t
stochastic PG pat . F. ge of parameters
for AR Constant step size;
Softmax + Zhang et al. (2021b) ) () Wider range of parameters;
log barrier (28) Cor. 4.11 Extra phased learning step unnec-
essary
Softmax + Agarwal et al. (2021) _9 B
log barrier (28) Cor. E.5 O((en )N Nmproved by iy
Mei et al. (2020) 1
Iteration Softmax (25) Thm. C.2 O(e™)
complexity of Softmax + Mei et al. (2020) linear
the exact PG entropy (130) Thm. H.2 H
for GO LS + bijection - -
H Pi]DG Zhang et al. (2020a) O(e™ )
Tabular + PPG Xiao (2022) O(e™ )
LQR Fazel et al. (2018) linear

* Type of convergence. PG: policy gradient; FOSP: first-order stationary point; GO: global optimum; AR: average

regret to the global optimum.

** Setting. bijection: Asm.l in Zhang et al. (2020a) about occupancy distribution; PPG: analysis also holds for the

projected PG; Tabular: direct parametrized policy; LQR: linear-quadratic regulator.
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A hierarchy between the assumptions

Figure from [Yuan et al., 2022]

Figure 1: A hierarchy between the assumptions we present throughout the chapter. An arrow indicates an

implication.

Softmax with log barrier (28)

Gaussian policy (71)
(unbounded action space)

Gaussian policy (71)

v

v

(bounded action space)

~

LS

N

Softmax with entropy (130)

N

Softmax (25)
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Overview of convergence results for NPG

Figure from [Yuan et al., 2023]

Table 1: Overview of different convergence results for NPG methods in the function approximation
regime. The darker cells contain our new results. The light cells contain previously known results
for NPG or Q-NPG with log-linear policies that we have a direct comparison to our new results.
White cells contain existing results that do not have the same setting as ours, so that we could not
make a direct comparison among them.

Setting Rate | Reg. C.S. LS.” Pros/cons compared to our work
Linear convergence
gl 2 NPG ol L T Linear v v Better concentrability coefficients C,
[Cayci et al., 2021]
Weaker assumptions on the approximation
Off-policy NAC with log-linear Linear v error with Lo norm instead of L., norm,;
[Chen and Theja Maguluri, 2022] They use adaptive increasing stepsize, while
we use non-adaptive increasing stepsize
Q-NPG with log-linear Linear v Their relative condition number depends
[Alfano and Rebeschini, 2022] on t, while ours is independent to ¢
Q-NPG/NPG with log-linear .
/(this work) ° L 4
Sublinear convergence
PMD for linear MDP O(L) Y
[Zanette et al., 2021, Hu et al., 2022] vk
Two-layer neural NAC O(-L) v
[Wang et al., 2020] vk
Two-layer neural NAC 1
[Cayci et al., 2022] O(x) d d
NPG with smooth policies O(1) v
[Agarwal et al., 2021] vk
NAC under Markovian sampling
with smooth policies O(%) v
[Xu et al., 2020]
NPG with smooth and
Fisher-non-degenerate policies O(%) v
[Liu et al., 2020]
(%;;Zi;fl:? ;ﬁ?;glzef]x O( ﬁ) v They have better error floor than ours
Weaker assumptions on the approximation
Off-policy NAC with log-linear O 1 ) / error with Lo norm instead of L., norm;
[Chen et al., 2022] k They use adaptive increasing stepsize, while
we use non-adaptive increasing stepsize
Q-NPG/NPG with log-linear O(1) v
(this work) &

* Reg.: regularization; C.S.: constant stepsize; I.S.: increasing stepsize.
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