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Motivations

‣Extend the linear convergence analysis of NPG from tabular and linear parametrization to 
general parametrization, including the neural network parametrization.  
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Step size

Not for large scale RL
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• Connection with Policy Iteration
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Behave more and more like policy iteration and enjoy fast linear convergence
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Figure: Experiments for AMPO with constant step size.
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Thank you !
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