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Context
2

Minimizing a finite sum with n, d� 1

w∗ ∈ arg min
w∈Rd

1

n

n∑
i=1

fi(w)
def
= f(w) (1)

First-order methods: SVRG [Johnson and Zhang, 2013], SAG [Schmidt et al., 2017], etc.
Issue: require parameter tuning, and/or the knowledge of the parameters of the
problem
Second-order methods: Stochastic Quasi-Newton [Gower et al., 2016], IQN [Mokhtari
et al., 2018], SNM [Kovalev et al., 2019]
Issues: not incremental, or too expensive even for GLMs (O(d2) per iteration)

Develop a second order method for solving (1) that is incremental , efficient, scales
well with the dimension d, and that requires no knowledge from the problem,
neither parameter tuning .
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SAN: Stochastic Average Newton (1/2)
3

1) Rewrite the optimality conditions ∇f(w) = 1

n

n∑
i=1

∇fi(w) = 0 as follows

1

n

n∑
i=1

αi = 0, (2)

αi = ∇fi(w), ∀i ∈ {1, . . . , n}. (3)

Motivation:

Each gradient lies on a separate equation.

This motivates us to sample one equation per iteration, and project our current
iterate on the linearization of this equation.
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SAN: Stochastic Average Newton (2/2)
4

(n+ 1) equations: (2) :
1

n

n∑
i=1

αi = 0, (3) : αi = ∇fi(w), ∀i ∈ {1, . . . , n}

2) � Subsampled Newton Raphson � [Yuan et al., 2021]

• With probability
1

n+ 1
, sample equation (2) and project onto its set of solutions:

αk+1
1 , . . . , αk+1

n = argmin
α1,...,αn∈Rd

∑n
i=1 ‖αi − αki ‖2

s.t. 1
n

∑n
i=1 αi = 0

• With probability
1

n+ 1
, sample the j-th equation of (3), and project onto the set of

solutions of its linearization at wk:

αk+1
j , wk+1 = argmin

αj ,w∈Rd

‖αj − αkj ‖2 + ‖w − wk‖2∇2fj(wk)

s.t. ∇fj(wk) +∇2fj(w
k)(w − wk) = αj
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What’s the point by doing this ?
(see paper for technique details and additional properties)

5

It turns out that SAN

is incremental , i.e. samples only one single data point per iteration

is efficient and scales well with the dimension d, i.e. costs O(d) per iteration for
generalized linear models

requires no parameter tuning (e.g. learning rate), neither knowledge from the
problem (no smoothness constant)

� We provide a global linear convergence theory of SAN

� Using our approach, we develop other new stochastic Newton methods, e.g., SANA
and SNRVM
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Experiments for SAN
(see paper for additional experiments)

6

Logistic regression for binary classification with the datasets from LibSVM
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Figure: Experiments for SAN applied for generalized linear model.



Details are in our paper:

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Jiabin Chen, Rui Yuan, Guillaume Garrigos, Robert M. Gower

Thank you
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