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Introduction



Context
4

Solving nonlinear equations
F (x) = 0

with F : Rd → Rn

Applications: phase retrieval problems, matrix completion problems, PDE, . . .
Main interest: Solving finite-sum minimization problems in machine learning
Newton-Raphson (NR) method

xk+1 = xk − γ
(
DF (xk)>

)†
F (xk)

DF (x) = [∇F1(x) · · · ∇Fn(x)] ∈ Rd×n: Jacobian matrix of F(
DF (xk)>

)†
: Moore-Penrose pseudoinverse of DF (xk)>
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Newton-Raphson methods
5

xk+1 = xk − γ
(
DF (xk)>

)†
F (xk)

Pros: Scale invariant

Function F Function C × F with C > 0

Cons: Cost per iteration is O
(
min

(
nd2, dn2

))
which is prohibitive when both n

and d are large
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Solving Large Nonlinear Equations with
Sketched Newton-Raphson



Sketch-and-project
[Gower and Richtárik, 2015]

7

Newton-Raphson (NR) method

xk+1 = xk − γ
(
DF (xk)>

)†
F (xk)

= argmin
x∈Rd

‖x− xk‖22

subject to DF (xk)>(x− xk) = −γF (xk).

(1)

Sketched Newton-Raphson (SNR) method

xk+1 = argmin
x∈Rd

‖x− xk‖22

subject to S>kDF (x
k)>(x− xk) = −γS>k F (xk) (2)

Sk ∼ D: sketching matrix of size n× τ with τ � n, low rank
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Decrease dimension using sketching
8

The sketching matrix
S ∼ D a distribution over matrices S ∈ Rn×τ and τ � n



Simple examples of sketches
9

Sample

S =


0
0
1
0

 = ej , S>DF (x)> = ∇Fj(x)>

Average sample

S =


a1
0
a3
a4

 =
∑
i∈C

aiei, S>DF (x)> =
∑
i∈C

ai∇Fi(x)>

Batch sample

S =


1 0 0
0 0 0
0 1 0
0 0 1

 = [ei ej ek] , S>DF (x)> =

∇Fi(x)>∇Fj(x)>
∇Fk(x)>

 ∈ Rτ×d
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Sketched Newton-Raphson (SNR)
10

xk+1 = argmin
x∈Rd

‖x− xk‖22

subject to Sk
>DF (xk)>(x− xk) + γSk

>F (xk) = 0



Sketched Newton-Raphson (SNR)
11

Explicit update:

xk+1 = argmin
x∈Rd

‖x− xk‖22

subject to S>kDF (x
k)>(x− xk) + γS>k F (x

k) = 0

= xk − γDF (xk)Sk(S>kDF (xk)>DF (xk)Sk︸ ︷︷ ︸
∈Rτ×τ

)†S>k F (x
k)

(3)

Complexity: Cost per iteration O(τ3 + τ2d)

Assumptions:
F is continuously twice differentiable
F contains at least one solution
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Algorithm
12

Input: D = distribution of sketching matrix, stepsize γ > 0
Choose x0 ∈ Rd

for k = 0, 1, . . . , do
Sample a fresh sketching matrix: Sk ∼ Dxk

xk+1 = xk − γkDF (xk)Sk

(
S>k DF (x

k)>DF (xk)Sk

)†
S>k F (x

k)

end
Output: Last iterate xk



Convergence Theories of Sketched
Newton-Raphson



Sketched Newton-Raphson as SGD
14

With small technical assumption

Assumption
F (Rd) ∩ Ker (E [HS(x)]) = {0}, ∀x ∈ Rd.

F (x) = 0 ⇐⇒ min
x∈Rd

1

2
‖F (x)‖2E[HS(xk)]

where

HS(x)
def
= S

(
S>DF (x)>DF (x)S

)†
S>

If we define

fS,k(x)
def
=

1

2
‖F (x)‖2HS(xk)

and fk(x)
def
= E [fS,k(x)] ,

then it is equivalent to solving min
x∈Rd

fk(x).
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Sketched Newton-Raphson as online SGD
15

Solve

min
x∈Rd

fk(x) = E [fS,k(x)]

At kth iteration

xk+1 = xk − γ∇fS,k(xk)
= xk − γDF (xk)HS(x

k)F (xk)

= xk − γDF (xk)S
(
S>DF (xk)>DF (xk)S

)†
S>F (xk)

Satisfy strong growth condition and zero noise stochastic gradient for free!
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Fits need one assumption
16

Assumption (Star-convexity)

fk(x
∗) ≥ fk(x

k) +
〈
∇fk(xk), x∗ − xk

〉

Class of non-convex functions includes:
SGD path on DNNs [Zhou et al., 2019]
Learning systems in control [Hardt et al., 2018]
Non-convex generalized linear models [Lee and Valiant, 2016]
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Online SGD inspired theory
(see paper for technique details and additional properties)

17

Theorem
Let xk be the iterates of SNR. Suppose star-convexity

fk(x
∗) ≥ fk(x

k) +
〈
∇fk(xk), x∗ − xk

〉
and the technical assumption hold, then

E
[

min
t=0,...,k−1

ft(x
t)

]
≤ 1

k

k−1∑
t=0

E[ft(xt)] ≤ 1

k

‖x0 − x∗‖2

2γ (1− γ)
.

Direct consequence:
New global convergence theory for the original Newton-Raphson method under strictly
weaker assumptions
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Applications of Sketched Newton-Raphson



Applications in machine learning
(see paper for additional applications)

19

Stochastic Newton method [Kovalev et al., 2019] (First global convergence theory)

New method for solving generalized linear models (GLM)



Stochastic Newton method (SNM)
[Kovalev et al., 2019]

20

Solving a finite-sum minimization problem

min
x∈Rd

[
f(x)

def
=

1

n

n∑
i=1

fi(x)

]

Finding a stationary point of the gradient of f : ∇f(x) = 1

n

n∑
i=1

∇fi(x) = 0

Re-write the problem as

1

n

n∑
i=1

∇fi(wi) = 0, and x = wi, for i = 1, . . . , n (4)

Sketching matrix : based on subsampling rows of (4) and the Hessian matrices of
the fi functions
SNM is a special case of SNR
Consequently, establish the first global convergence theory of SNM
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Consequently, establish the first global convergence theory of SNM
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Generalized linear model

min
x∈Rd

f(x) =
1

n

n∑
i=1

φi(a
>
i x) +

λ

2
‖x‖2

We aim to solve ∇f(x) = 0

∇f(x) =
1

n

n∑
i=1

φ′i(a
>
i x)︸ ︷︷ ︸

−αi

ai + λx = 0

Fixed point equations

x =
1

λn
Aα, (5)

αi = −φ′i(a>i x), for i = 1, . . . , n, (6)

with A = [a1, · · · , an]
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Experiments for TCS method applied for GLM
(see paper for additional experiments)
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Logistic regression for binary classification
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Figure: Experiments for TCS method applied for generalized linear model.
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Summary
Principled development of adaptive scale invariant methods using projected
sketched Newton-Raphson
SGD interpretation gives fast convergence theory (even for non-convex)
Open the way to designing and analyzing a host of new stochastic second order
methods

Future work
Extend SNR by using matrix weighted projection
Design and analyze more applications of SNR
Develop efficient accelerated SNR, SNR with momentum or variance reduced SNR
methods



Details are in our paper:

Sketched Newton-Raphson
https://arxiv.org/abs/2006.12120
Rui Yuan, Alessandro Lazaric, Robert M. Gower

Thank you

https://arxiv.org/abs/2006.12120
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