# Sketched Newton-Raphson 

Rui Yuan ${ }^{\dagger \S}$, Alessandro Lazaric ${ }^{\dagger}$, Robert M. Gower ${ }^{\S}$
${ }^{\dagger}$ Facebook AI Research and ${ }^{\S}$ LTCI, Télécom Paris

Seminar of 2nd Year PhD of EDMH
April 152021

1. Introduction
2. Solving Large Nonlinear Equations with Sketched Newton-Raphson
3. Convergence Theories of Sketched Newton-Raphson
4. Applications of Sketched Newton-Raphson
5. Conclusion

## Introduction

## Context

- Solving nonlinear equations

$$
F(x)=0
$$

with $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

## Context

- Solving nonlinear equations

$$
F(x)=0
$$

with $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

- Applications: phase retrieval problems, matrix completion problems, PDE, ...


## Context

- Solving nonlinear equations

$$
F(x)=0
$$

with $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

- Applications: phase retrieval problems, matrix completion problems, PDE, ...
- Main interest: Solving finite-sum minimization problems in machine learning


## Context

- Solving nonlinear equations

$$
F(x)=0
$$

with $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

- Applications: phase retrieval problems, matrix completion problems, PDE, ...
- Main interest: Solving finite-sum minimization problems in machine learning
- Newton-Raphson (NR) method

$$
x^{k+1}=x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right)
$$

## Context

- Solving nonlinear equations

$$
F(x)=0
$$

with $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$

- Applications: phase retrieval problems, matrix completion problems, PDE, ...
- Main interest: Solving finite-sum minimization problems in machine learning
- Newton-Raphson (NR) method

$$
x^{k+1}=x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right)
$$

$D F(x)=\left[\nabla F_{1}(x) \cdots \nabla F_{n}(x)\right] \in \mathbb{R}^{d \times n}:$ Jacobian matrix of $F$
$\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger}$ : Moore-Penrose pseudoinverse of $D F\left(x^{k}\right)^{\top}$

Newton-Raphson methods

$$
x^{k+1}=x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right)
$$

## Newton-Raphson methods

$$
x^{k+1}=x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right)
$$

- Pros: Scale invariant



## Newton-Raphson methods

$$
x^{k+1}=x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right)
$$

- Pros: Scale invariant



## Function $F$



Function $C \times F$ with $C>0$

- Cons: Cost per iteration is $\mathcal{O}\left(\min \left(n d^{2}, d n^{2}\right)\right)$ which is prohibitive when both $n$ and $d$ are large


## Solving Large Nonlinear Equations with Sketched Newton-Raphson

## Sketch-and-project

 [Gower and Richtárik, 2015]
## Sketch-and-project

 [Gower and Richtárik, 2015]- Newton-Raphson (NR) method


## Sketch-and-project

[Gower and Richtárik, 2015]

- Newton-Raphson (NR) method

$$
x^{k+1}=x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right)
$$

## Sketch-and-project

[Gower and Richtárik, 2015]

- Newton-Raphson (NR) method

$$
\begin{align*}
x^{k+1}= & x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right) \\
= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \text { subject to } \quad D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)=-\gamma F\left(x^{k}\right) .
\end{align*}
$$

## Sketch-and-project

[Gower and Richtárik, 2015]

- Newton-Raphson (NR) method

$$
\begin{align*}
x^{k+1}= & x^{k}-\gamma\left(D F\left(x^{k}\right)^{\top}\right)^{\dagger} F\left(x^{k}\right) \\
= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \text { subject to } D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)=-\gamma F\left(x^{k}\right) .
\end{align*}
$$

- Sketched Newton-Raphson (SNR) method

$$
\begin{align*}
x^{k+1}= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \text { subject to } \quad \mathrm{S}_{k}^{\top} D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)=-\gamma \mathrm{S}_{k}^{\top} F\left(x^{k}\right) \tag{2}
\end{align*}
$$

$\mathbf{S}_{k} \sim \mathcal{D}$ : sketching matrix of size $n \times \tau$ with $\tau \ll n$, low rank

## Decrease dimension using sketching

The sketching matrix
$\mathbf{S} \sim \mathcal{D}$ a distribution over matrices $\mathbf{S} \in \mathbb{R}^{n \times \tau}$ and $\tau \ll n$


## Simple examples of sketches

- Sample

$$
\mathbf{S}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=e_{j},
$$

$$
\mathbf{S}^{\top} D F(x)^{\top}=\nabla F_{j}(x)^{\top}
$$

## Simple examples of sketches

- Sample

$$
\mathbf{S}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=e_{j},
$$

$$
\mathbf{S}^{\top} D F(x)^{\top}=\nabla F_{j}(x)^{\top}
$$

- Average sample

$$
\mathbf{S}=\left[\begin{array}{c}
a_{1} \\
0 \\
a_{3} \\
a_{4}
\end{array}\right]=\sum_{i \in C} a_{i} e_{i},
$$

$$
\mathbf{S}^{\top} D F(x)^{\top}=\sum_{i \in C} a_{i} \nabla F_{i}(x)^{\top}
$$

## Simple examples of sketches

- Sample

$$
\mathbf{S}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=e_{j},
$$

$$
\mathbf{S}^{\top} D F(x)^{\top}=\nabla F_{j}(x)^{\top}
$$

- Average sample

$$
\mathbf{S}=\left[\begin{array}{c}
a_{1} \\
0 \\
a_{3} \\
a_{4}
\end{array}\right]=\sum_{i \in C} a_{i} e_{i},
$$

$$
\mathbf{S}^{\top} D F(x)^{\top}=\sum_{i \in C} a_{i} \nabla F_{i}(x)^{\top}
$$

- Batch sample

$$
\mathbf{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
e_{i} & e_{j} & e_{k}
\end{array}\right], \quad \mathbf{S}^{\top} D F(x)^{\top}=\left[\begin{array}{c}
\nabla F_{i}(x)^{\top} \\
\nabla F_{j}(x)^{\top} \\
\nabla F_{k}(x)^{\top}
\end{array}\right] \in \mathbb{R}^{\tau \times d}
$$

## Sketched Newton-Raphson (SNR)

$$
\begin{aligned}
x^{k+1}= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \text { subject to } \mathrm{S}_{k}^{\top} D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)+\gamma \mathrm{S}_{k}^{\top} F\left(x^{k}\right)=0
\end{aligned}
$$



## Sketched Newton-Raphson (SNR)

Explicit update:

(3)

## Sketched Newton-Raphson (SNR)

Explicit update:

$$
\begin{align*}
x^{k+1}= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \text { subject to } \mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)+\gamma \mathbf{S}_{k}^{\top} F\left(x^{k}\right)=0 \tag{3}
\end{align*}
$$

## Sketched Newton-Raphson (SNR)

Explicit update:

$$
\begin{align*}
x^{k+1}= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \quad \text { subject to } \mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)+\gamma \mathbf{S}_{k}^{\top} F\left(x^{k}\right)=0 \\
= & x^{k}-\gamma D F\left(x^{k}\right) \mathbf{S}_{k}(\underbrace{\mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top} D F\left(x^{k}\right) \mathbf{S}_{k}}_{\in \mathbb{R}^{\tau \times \tau}})^{\dagger} \mathbf{S}_{k}^{\top} F\left(x^{k}\right) \tag{3}
\end{align*}
$$

## Sketched Newton-Raphson (SNR)

Explicit update:

$$
\begin{align*}
x^{k+1}= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \text { subject to } \mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)+\gamma \mathbf{S}_{k}^{\top} F\left(x^{k}\right)=0 \\
= & x^{k}-\gamma D F\left(x^{k}\right) \mathbf{S}_{k}(\underbrace{\mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top} D F\left(x^{k}\right) \mathbf{S}_{k}}_{\in \mathbb{R}^{\tau \times \tau}})^{\dagger} \mathbf{S}_{k}^{\top} F\left(x^{k}\right) \tag{3}
\end{align*}
$$

Complexity: Cost per iteration $\mathcal{O}\left(\tau^{3}+\tau^{2} d\right)$

## Sketched Newton-Raphson (SNR)

Explicit update:

$$
\begin{align*}
x^{k+1}= & \underset{x \in \mathbb{R}^{d}}{\arg \min }\left\|x-x^{k}\right\|_{2}^{2} \\
& \quad \text { subject to } \mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top}\left(x-x^{k}\right)+\gamma \mathbf{S}_{k}^{\top} F\left(x^{k}\right)=0 \\
= & x^{k}-\gamma D F\left(x^{k}\right) \mathbf{S}_{k}(\underbrace{\mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top} D F\left(x^{k}\right) \mathbf{S}_{k}}_{\in \mathbb{R}^{\tau} \times \tau})^{\dagger} \mathbf{S}_{k}^{\top} F\left(x^{k}\right) \tag{3}
\end{align*}
$$

Complexity: Cost per iteration $\mathcal{O}\left(\tau^{3}+\tau^{2} d\right)$
Assumptions:

- $F$ is continuously twice differentiable
- $F$ contains at least one solution


## Algorithm

Input: $\mathcal{D}=$ distribution of sketching matrix, stepsize $\gamma>0$
Choose $x^{0} \in \mathbb{R}^{d}$
for $k=0,1, \ldots$, do
Sample a fresh sketching matrix: $\mathbf{S}_{k} \sim \mathcal{D}_{x^{k}}$
$x^{k+1}=x^{k}-\gamma_{k} D F\left(x^{k}\right) \mathbf{S}_{k}\left(\mathbf{S}_{k}^{\top} D F\left(x^{k}\right)^{\top} D F\left(x^{k}\right) \mathbf{S}_{k}\right)^{\dagger} \mathbf{S}_{k}^{\top} F\left(x^{k}\right)$
end
Output: Last iterate $x^{k}$

## Convergence Theories of Sketched Newton-Raphson

## Sketched Newton-Raphson as SGD

$$
F(x)=0 \quad \Longleftrightarrow \quad \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|F(x)\|_{\mathbb{E}\left[\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)\right]}^{2}
$$

## Sketched Newton-Raphson as SGD

$$
F(x)=0 \quad \Longleftrightarrow \quad \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|F(x)\|_{\mathbb{E}\left[\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)\right]}^{2}
$$

where

$$
\mathbf{H}_{\mathrm{S}}(x) \stackrel{\text { def }}{=} \mathrm{S}\left(\mathrm{~S}^{\top} D F(x)^{\top} D F(x) \mathrm{S}\right)^{\dagger} \mathrm{S}^{\top}
$$

## Sketched Newton-Raphson as SGD

With small technical assumption

## Assumption

$$
F\left(\mathbb{R}^{d}\right) \cap \operatorname{Ker}\left(\mathbb{E}\left[\mathbf{H}_{\mathbf{S}}(x)\right]\right)=\{0\}, \quad \forall x \in \mathbb{R}^{d} .
$$

$$
F(x)=0 \quad \Longleftrightarrow \quad \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|F(x)\|_{\mathbb{E}\left[\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)\right]}^{2}
$$

where

$$
\mathbf{H}_{\mathrm{S}}(x) \stackrel{\text { def }}{=} \mathrm{S}\left(\mathrm{~S}^{\top} D F(x)^{\top} D F(x) \mathrm{S}\right)^{\dagger} \mathrm{S}^{\top}
$$

## Sketched Newton-Raphson as SGD

With small technical assumption

## Assumption

$$
F\left(\mathbb{R}^{d}\right) \cap \operatorname{Ker}\left(\mathbb{E}\left[\mathbf{H}_{\mathbf{S}}(x)\right]\right)=\{0\}, \quad \forall x \in \mathbb{R}^{d} .
$$

$$
F(x)=0 \quad \Longleftrightarrow \quad \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|F(x)\|_{\mathbb{E}\left[\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)\right]}^{2}
$$

where

$$
\mathbf{H}_{\mathrm{S}}(x) \stackrel{\text { def }}{=} \mathrm{S}\left(\mathrm{~S}^{\top} D F(x)^{\top} D F(x) \mathrm{S}\right)^{\dagger} \mathrm{S}^{\top}
$$

If we define

$$
f_{\mathrm{S}, k}(x) \stackrel{\text { def }}{=} \frac{1}{2}\|F(x)\|_{\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)}^{2} \quad \text { and } \quad f_{k}(x) \stackrel{\text { def }}{=} \mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

## Sketched Newton-Raphson as SGD

With small technical assumption

## Assumption

$$
F\left(\mathbb{R}^{d}\right) \cap \operatorname{Ker}\left(\mathbb{E}\left[\mathbf{H}_{\mathbf{S}}(x)\right]\right)=\{0\}, \quad \forall x \in \mathbb{R}^{d} .
$$

$$
F(x)=0 \quad \Longleftrightarrow \quad \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|F(x)\|_{\mathbb{E}\left[\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)\right]}^{2}
$$

where

$$
\mathbf{H}_{\mathrm{S}}(x) \stackrel{\text { def }}{=} \mathrm{S}\left(\mathrm{~S}^{\top} D F(x)^{\top} D F(x) \mathrm{S}\right)^{\dagger} \mathrm{S}^{\top}
$$

If we define

$$
f_{\mathrm{S}, k}(x) \stackrel{\text { def }}{=} \frac{1}{2}\|F(x)\|_{\mathbf{H}_{\mathrm{S}}\left(x^{k}\right)}^{2} \quad \text { and } \quad f_{k}(x) \stackrel{\text { def }}{=} \mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

then it is equivalent to solving $\min _{x \in \mathbb{R}^{d}} f_{k}(x)$.

## Sketched Newton-Raphson as online SGD

Solve

$$
\min _{x \in \mathbb{R}^{d}} f_{k}(x)=\mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

## Sketched Newton-Raphson as online SGD

Solve

$$
\min _{x \in \mathbb{R}^{d}} f_{k}(x)=\mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

At $k$ th iteration

## Sketched Newton-Raphson as online SGD

Solve

$$
\min _{x \in \mathbb{R}^{d}} f_{k}(x)=\mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

At $k$ th iteration

$$
x^{k+1}=x^{k}-\gamma \nabla f_{\mathrm{S}, k}\left(x^{k}\right)
$$

## Sketched Newton-Raphson as online SGD

Solve

$$
\min _{x \in \mathbb{R}^{d}} f_{k}(x)=\mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

At $k$ th iteration

$$
\begin{aligned}
x^{k+1} & =x^{k}-\gamma \nabla f_{\mathrm{S}, k}\left(x^{k}\right) \\
& =x^{k}-\gamma D F\left(x^{k}\right) \mathbf{H}_{\mathrm{S}}\left(x^{k}\right) F\left(x^{k}\right)
\end{aligned}
$$

## Sketched Newton-Raphson as online SGD

Solve

$$
\min _{x \in \mathbb{R}^{d}} f_{k}(x)=\mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

At $k$ th iteration

$$
\begin{aligned}
x^{k+1} & =x^{k}-\gamma \nabla f_{\mathrm{S}, k}\left(x^{k}\right) \\
& =x^{k}-\gamma D F\left(x^{k}\right) \mathbf{H}_{\mathrm{S}}\left(x^{k}\right) F\left(x^{k}\right) \\
& =x^{k}-\gamma D F\left(x^{k}\right) \mathrm{S}\left(\mathrm{~S}^{\top} D F\left(x^{k}\right)^{\top} D F\left(x^{k}\right) \mathrm{S}\right)^{\dagger} \mathrm{S}^{\top} F\left(x^{k}\right)
\end{aligned}
$$

## Sketched Newton-Raphson as online SGD

Solve

$$
\min _{x \in \mathbb{R}^{d}} f_{k}(x)=\mathbb{E}\left[f_{\mathrm{S}, k}(x)\right]
$$

At $k$ th iteration

$$
\begin{aligned}
x^{k+1} & =x^{k}-\gamma \nabla f_{\mathrm{S}, k}\left(x^{k}\right) \\
& =x^{k}-\gamma D F\left(x^{k}\right) \mathbf{H}_{\mathrm{S}}\left(x^{k}\right) F\left(x^{k}\right) \\
& =x^{k}-\gamma D F\left(x^{k}\right) \mathrm{S}\left(\mathrm{~S}^{\top} D F\left(x^{k}\right)^{\top} D F\left(x^{k}\right) \mathrm{S}\right)^{\dagger} \mathrm{S}^{\top} F\left(x^{k}\right)
\end{aligned}
$$

Satisfy strong growth condition and zero noise stochastic gradient for free!

## Fits need one assumption

Assumption (Star-convexity)

$$
f_{k}\left(x^{*}\right) \geq f_{k}\left(x^{k}\right)+\left\langle\nabla f_{k}\left(x^{k}\right), x^{*}-x^{k}\right\rangle
$$

## Fits need one assumption

Assumption (Star-convexity)

$$
f_{k}\left(x^{*}\right) \geq f_{k}\left(x^{k}\right)+\left\langle\nabla f_{k}\left(x^{k}\right), x^{*}-x^{k}\right\rangle
$$



## Fits need one assumption

## Assumption (Star-convexity)

$$
f_{k}\left(x^{*}\right) \geq f_{k}\left(x^{k}\right)+\left\langle\nabla f_{k}\left(x^{k}\right), x^{*}-x^{k}\right\rangle
$$



Class of non-convex functions includes:

- SGD path on DNNs [Zhou et al., 2019]
- Learning systems in control [Hardt et al., 2018]

■ Non-convex generalized linear models [Lee and Valiant, 2016]

## Online SGD inspired theory

(see paper for technique details and additional properties)

## Theorem

Let $x^{k}$ be the iterates of SNR. Suppose star-convexity

$$
f_{k}\left(x^{*}\right) \geq f_{k}\left(x^{k}\right)+\left\langle\nabla f_{k}\left(x^{k}\right), x^{*}-x^{k}\right\rangle
$$

and the technical assumption hold, then

$$
\mathbb{E}\left[\min _{t=0, \ldots, k-1} f_{t}\left(x^{t}\right)\right] \leq \frac{1}{k} \sum_{t=0}^{k-1} \mathbb{E}\left[f_{t}\left(x^{t}\right)\right] \leq \frac{1}{k} \frac{\left\|x^{0}-x^{*}\right\|^{2}}{2 \gamma(1-\gamma)}
$$

## Online SGD inspired theory

(see paper for technique details and additional properties)

## Theorem

Let $x^{k}$ be the iterates of SNR. Suppose star-convexity

$$
f_{k}\left(x^{*}\right) \geq f_{k}\left(x^{k}\right)+\left\langle\nabla f_{k}\left(x^{k}\right), x^{*}-x^{k}\right\rangle
$$

and the technical assumption hold, then

$$
\mathbb{E}\left[\min _{t=0, \ldots, k-1} f_{t}\left(x^{t}\right)\right] \leq \frac{1}{k} \sum_{t=0}^{k-1} \mathbb{E}\left[f_{t}\left(x^{t}\right)\right] \leq \frac{1}{k} \frac{\left\|x^{0}-x^{*}\right\|^{2}}{2 \gamma(1-\gamma)}
$$

## Direct consequence:

New global convergence theory for the original Newton-Raphson method under strictly weaker assumptions

Applications of Sketched Newton-Raphson

## Applications in machine learning

(see paper for additional applications)

- Stochastic Newton method [Kovalev et al., 2019] (First global convergence theory)
- New method for solving generalized linear models (GLM)


## Stochastic Newton method (SNM)

[Kovalev et al., 2019]

- Solving a finite-sum minimization problem

$$
\min _{x \in \mathbb{R}^{d}}\left[f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right]
$$

## Stochastic Newton method (SNM)

[Kovalev et al., 2019]

- Solving a finite-sum minimization problem

$$
\min _{x \in \mathbb{R}^{d}}\left[f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right]
$$

- Finding a stationary point of the gradient of $f: \nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(x)=0$


## Stochastic Newton method (SNM)

[Kovalev et al., 2019]

- Solving a finite-sum minimization problem

$$
\min _{x \in \mathbb{R}^{d}}\left[f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right]
$$

- Finding a stationary point of the gradient of $f: \nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(x)=0$
- Re-write the problem as

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(w^{i}\right)=0, \quad \text { and } \quad x=w^{i}, \quad \text { for } i=1, \ldots, n \tag{4}
\end{equation*}
$$

## Stochastic Newton method (SNM)

[Kovalev et al., 2019]

- Solving a finite-sum minimization problem

$$
\min _{x \in \mathbb{R}^{d}}\left[f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right]
$$

- Finding a stationary point of the gradient of $f: \nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(x)=0$
- Re-write the problem as

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(w^{i}\right)=0, \quad \text { and } \quad x=w^{i}, \quad \text { for } i=1, \ldots, n \tag{4}
\end{equation*}
$$

- Sketching matrix : based on subsampling rows of (4) and the Hessian matrices of the $f_{i}$ functions


## Stochastic Newton method (SNM)

[Kovalev et al., 2019]

- Solving a finite-sum minimization problem

$$
\min _{x \in \mathbb{R}^{d}}\left[f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right]
$$

- Finding a stationary point of the gradient of $f: \nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(x)=0$
- Re-write the problem as

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(w^{i}\right)=0, \quad \text { and } \quad x=w^{i}, \quad \text { for } i=1, \ldots, n \tag{4}
\end{equation*}
$$

- Sketching matrix : based on subsampling rows of (4) and the Hessian matrices of the $f_{i}$ functions
- SNM is a special case of SNR


## Stochastic Newton method (SNM)

[Kovalev et al., 2019]

- Solving a finite-sum minimization problem

$$
\min _{x \in \mathbb{R}^{d}}\left[f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right]
$$

- Finding a stationary point of the gradient of $f: \nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(x)=0$
- Re-write the problem as

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(w^{i}\right)=0, \quad \text { and } \quad x=w^{i}, \quad \text { for } i=1, \ldots, n \tag{4}
\end{equation*}
$$

- Sketching matrix : based on subsampling rows of (4) and the Hessian matrices of the $f_{i}$ functions
- SNM is a special case of SNR
- Consequently, establish the first global convergence theory of SNM


## Tossing-coin-sketch (TCS) for solving GLMs

Generalized linear model

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}\left(a_{i}^{\top} x\right)+\frac{\lambda}{2}\|x\|^{2}
$$

## Tossing-coin-sketch (TCS) for solving GLMs

Generalized linear model

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}\left(a_{i}^{\top} x\right)+\frac{\lambda}{2}\|x\|^{2}
$$

We aim to solve $\nabla f(x)=0$

$$
\nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\phi_{i}^{\prime}\left(a_{i}^{\top} x\right)}_{-\alpha_{i}} a_{i}+\lambda x=0
$$

## Tossing-coin-sketch (TCS) for solving GLMs

Generalized linear model

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}\left(a_{i}^{\top} x\right)+\frac{\lambda}{2}\|x\|^{2}
$$

We aim to solve $\nabla f(x)=0$

$$
\nabla f(x)=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\phi_{i}^{\prime}\left(a_{i}^{\top} x\right)}_{-\alpha_{i}} a_{i}+\lambda x=0
$$

Fixed point equations

$$
\begin{align*}
x & =\frac{1}{\lambda n} A \alpha,  \tag{5}\\
\alpha_{i} & =-\phi_{i}^{\prime}\left(a_{i}^{\top} x\right), \quad \text { for } i=1, \ldots, n \tag{6}
\end{align*}
$$

with $A=\left[a_{1}, \cdots, a_{n}\right]$

## Experiments for TCS method applied for GLM

 (see paper for additional experiments)Logistic regression for binary classification


Figure: Experiments for TCS method applied for generalized linear model.

Conclusion

## Conclusion

Summary

- Principled development of adaptive scale invariant methods using projected sketched Newton-Raphson
- SGD interpretation gives fast convergence theory (even for non-convex)

■ Open the way to designing and analyzing a host of new stochastic second order methods

Future work

- Extend SNR by using matrix weighted projection
- Design and analyze more applications of SNR
- Develop efficient accelerated SNR, SNR with momentum or variance reduced SNR methods

Details are in our paper:

## Sketched Newton-Raphson

https://arxiv.org/abs/2006.12120
Rui Yuan, Alessandro Lazaric, Robert M. Gower

## Thank you

Robert Mansel Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660-1690, 2015.
Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems. Journal of Machine Learning Research, 19(29):1-44, 2018.
Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtarik. Stochastic newton and cubic newton methods with simple local linear-quadratic rates. arxiv:1912.01597, 2019.
Jasper C. H. Lee and Paul Valiant. Optimizing star-convex functions. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pages 603-614, 2016.
Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. SGD converges to global minimum in deep learning via star-convex path. In International Conference on Learning Representations, 2019.

